Publications by authors named "Anthony Altieri"

Introduction: TNFα-inducible matrix metalloproteinases play a critical role in the process of airway remodeling in respiratory inflammatory disease including asthma. The cationic host defense peptide LL-37 is elevated in the lungs during airway inflammation. However, the impact of LL-37 on TNFα-driven processes is not well understood.

View Article and Find Full Text PDF

Background: The heterodimer interleukin (IL)-17A/F is elevated in the lungs in chronic respiratory disease such as severe asthma, along with the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). Although IL-17A/F and TNF-α are known to functionally cooperate to exacerbate airway inflammation, proteins altered by their interaction in the lungs are not fully elucidated.

Results: We used Slow Off-rate Modified Aptamer-based proteomic array to identify proteins that are uniquely and/or synergistically enhanced by concurrent stimulation with IL-17A/F and TNF-α in human bronchial epithelial cells (HBEC).

View Article and Find Full Text PDF

Biological sex impacts disease prevalence, severity and response to therapy in asthma, however preclinical studies often use only one sex in murine models. Here, we detail sex-related differences in immune responses using a house dust mite (HDM)-challenge model of acute airway inflammation, in adult mice of two different strains (BALB/c and C57BL/6NJ). Female and male mice were challenged (intranasally) with HDM extract (~ 25 μg) for 2 weeks (N = 10 per group).

View Article and Find Full Text PDF

Innate defense regulator (IDR) peptides show promise as immunomodulatory therapeutics. However, there is limited understanding of the relationship of IDR peptide sequence and/or structure with its immunomodulatory activity. We previously reported that an IDR peptide, IDR-1002, reduces airway hyperresponsiveness (AHR) and inflammation in a house dust mite (HDM)-challenged murine model of airway inflammation.

View Article and Find Full Text PDF

IL-33 induces airway inflammation and hyper-responsiveness in respiratory diseases. Although defined as a therapeutic target, there are limited studies that have comprehensively investigated IL-33-mediated responses in the lungs in vivo. In this study, we characterized immunological and physiological responses induced by intranasal IL-33 challenge, in a mouse model.

View Article and Find Full Text PDF

Antimicrobial peptides, also known as host defence peptides, are immunomodulatory molecules required to resolve infections. Antimicrobial peptides and proteins (APPs) are important in the control of infections in the lungs. Despite evidence that APPs exhibit a wide range of immune functions and modulate inflammation, the effect of inflammatory cytokines on the expression of APPs is not completely defined.

View Article and Find Full Text PDF

Background: Exacerbation in asthma is associated with decreased expression of specific host defence peptides (HDPs) in the lungs. We examined the effects of a synthetic derivative of HDP, innate defence regulator (IDR) peptide IDR-1002, in house dust mite (HDM)-challenged murine model of asthma, in interleukin (IL)-33-challenged mice and in human primary bronchial epithelial cells (PBECs).

Methods: IDR-1002 (6 mg/kg per mouse) was administered (subcutaneously) in HDM-challenged and/or IL-33-challenged BALB/c mice.

View Article and Find Full Text PDF

We investigate the nonlinear evolution of the morphological deformation of a solid-liquid interface of a binary melt under rapid solidification conditions near two absolute stability limits. The first of these involves the complete stabilization of the system to cellular instabilities as a result of large enough surface energy. We derive nonlinear evolution equations in several limits in this scenario and investigate the effect of interfacial disequilibrium on the nonlinear deformations that arise.

View Article and Find Full Text PDF

House dust mite (HDM) challenge is commonly used in murine models of allergic asthma for preclinical pathophysiological studies. However, few studies define objective readouts or biomarkers in this model. In this study we characterized immune responses and defined molecular markers that are specifically altered after HDM challenge.

View Article and Find Full Text PDF

Amphiphilic aminoglycosides (AAGs) are an emerging source of antibacterials to combat infections caused by antibiotic-resistant bacteria. Mode-of-action studies indicate that AAGs predominately target bacterial membranes, thereby leading to depolarization and increased permeability. To assess whether AAGs also induce host-directed immunomodulatory responses, we determined the AAG-dependent induction of cytokines in macrophages in the absence or presence of lipopolysaccharide (LPS).

View Article and Find Full Text PDF