The current study examines cohort (i.e., Generation X, Baby Boomers, and Silent Generation) and gender differences in the stability of Mexican-origin family caregivers over time.
View Article and Find Full Text PDFDespite the symmetrical structure of nucleosomes, in vitro studies have shown that transcription proceeds with different efficiency depending on the orientation of the DNA sequence around them. However, it is unclear whether this functional asymmetry is present in vivo and whether it could regulate transcriptional directionality. Here, we report that the proximal and distal halves of nucleosomal DNA contribute differentially to nucleosome stability in the genome.
View Article and Find Full Text PDFHere, we report the design, construction, and characterization of a tRNA neochromosome, a designer chromosome that functions as an additional, de novo counterpart to the native complement of Saccharomyces cerevisiae. Intending to address one of the central design principles of the Sc2.0 project, the ∼190-kb tRNA neochromosome houses all 275 relocated nuclear tRNA genes.
View Article and Find Full Text PDFBackground And Objectives: To examine the role of probable dementia on changes in living arrangements and mortality among very old Mexicans and Mexican Americans in 2 different nations.
Research Design And Methods: We employ the Hispanic Established Population for the Epidemiologic Study of the Elderly and the Mexican Health and Aging Study, 2 comparable longitudinal data sets, to identify predictors of changes in living arrangements using multinomial logistic regression, controlling for cognitive status, demographic characteristics, and resources.
Results: In Mexico, women with dementia who lived alone at baseline were more likely to become part of an extended family household than men with similar levels of cognitive impairment.
The stability of the genome is occasionally challenged by the formation of DNA-RNA hybrids and R-loops, which can be influenced by the chromatin context. This is mainly due to the fact that DNA-RNA hybrids hamper the progression of replication forks, leading to fork stalling and, ultimately, DNA breaks. Through a specific screening of chromatin modifiers performed in the yeast Saccharomyces cerevisiae, we have found that the Rtt109 histone acetyltransferase is involved in several steps of R-loop-metabolism and their associated genetic instability.
View Article and Find Full Text PDFHomologous recombination is essential to maintain genome stability in response to DNA damage. Here, we have used genome-wide sequencing to quantitatively analyze at nucleotide resolution the dynamics of DNA end resection, re-synthesis, and gene conversion at a double-strand break. Resection initiates asymmetrically in an MRX-independent manner before proceeding steadily in both directions.
View Article and Find Full Text PDFCohesin is a regulator of genome architecture with roles in sister chromatid cohesion and chromosome compaction. The recruitment and mobility of cohesin complexes on DNA is restricted by nucleosomes. Here, we show that the role of cohesin in chromosome organization requires the histone chaperone FACT ('facilitates chromatin transcription') in Saccharomyces cerevisiae.
View Article and Find Full Text PDFMotivation: The Burrows-Wheeler transform (BWT) is widely used for the fast alignment of high-throughput sequence data. This method also has potential applications in other areas of bioinformatics, and it can be specially useful for the fast searching of patterns on coverage data from different sources.
Results: We present a nucleosome pattern search method that converts levels of nucleosomal occupancy to a sequence-like format to which BWT searches can be applied.
The discovery of CpG islands (CGIs) and the study of their structure and properties run parallel to the development of molecular biology in the last two decades of the twentieth century and to the development of high-throughput genomic technologies at the turn of the millennium. First identified as discrete G + C-rich regions of unmethylated DNA in several vertebrates, CGIs were soon found to display additional distinctive chromatin features from the rest of the genome in terms of accessibility and of the epigenetic modifications of their histones. These features, together with their colocalization with promoters and with origins of DNA replication in mammals, highlighted their relevance in the regulation of genomic processes.
View Article and Find Full Text PDFThe fission yeast is an excellent model organism to study DNA metabolism, in which the DNA replication and repair mechanisms are evolutionarily conserved. In this introduction we describe a range of methods commonly used to study aspects of DNA metabolism in fission yeast, focusing on approaches used for the analysis of genome stability, DNA replication, and DNA repair. We describe the use of a minichromosome, Ch, for monitoring different aspects of genome stability.
View Article and Find Full Text PDFCold Spring Harb Protoc
March 2018
Two-dimensional gel electrophoresis allows direct detection of DNA replication and recombination intermediates in preparations of total genomic DNA. This technique is widely used to identify replication origins in the yeast genome and is based on the different mobility in agarose gels of linear and branched DNA molecules depending on their mass and structure. During the first dimension, low-voltage and a low-percentage agarose gel favors separation of the molecules by their mass and minimizes the effect of their structure.
View Article and Find Full Text PDFNucleosomes are the basic units of chromatin. They compact the genome inside the nucleus and regulate the access of proteins to DNA. In the yeast genome, most nucleosomes occupy well-defined positions, which are maintained under many different physiological situations and genetic backgrounds.
View Article and Find Full Text PDFIn the yeast genome, a large proportion of nucleosomes occupy well-defined and stable positions. While the contribution of chromatin remodelers and DNA binding proteins to maintain this organization is well established, the relevance of the DNA sequence to nucleosome positioning in the genome remains controversial. Through quantitative analysis of nucleosome positioning, we show that sequence changes distort the nucleosomal pattern at the level of individual nucleosomes in three species of Schizosaccharomyces and in Saccharomyces cerevisiae This effect is equally detected in transcribed and nontranscribed regions, suggesting the existence of sequence elements that contribute to positioning.
View Article and Find Full Text PDFThe occupancy of nucleosomes governs access to the eukaryotic genomes and results from a combination of biophysical features and the effect of ATP-dependent remodelling complexes. Most promoter regions show a conserved pattern characterized by a nucleosome-depleted region (NDR) flanked by nucleosomal arrays. The conserved RSC remodeler was reported to be critical to establish NDR in vivo in budding yeast but other evidences suggested that this activity may not be conserved in fission yeast.
View Article and Find Full Text PDFIn fission yeast, the ste11 gene encodes the master regulator initiating the switch from vegetative growth to gametogenesis. In a previous paper, we showed that the methylation of H3K4 and consequent promoter nucleosome deacetylation repress ste11 induction and cell differentiation (Materne et al., 2015) but the regulatory steps remain poorly understood.
View Article and Find Full Text PDFThe dynamics of eukaryotic DNA polymerases has been difficult to establish because of the difficulty of tracking them along the chromosomes during DNA replication. Recent work has addressed this problem in the yeasts Schizosaccharomyces pombe and Saccharomyces cerevisiae through the engineering of replicative polymerases to render them prone to incorporating ribonucleotides at high rates. Their use as tracers of the passage of each polymerase has provided a picture of unprecedented resolution of the organization of replicons and replication origins in the two yeasts and has uncovered important differences between them.
View Article and Find Full Text PDFThe phosphorylation of the RNA polymerase II C-terminal domain (CTD) plays a key role in delineating transcribed regions within chromatin by recruiting histone methylases and deacetylases. Using genome-wide nucleosome mapping, we show that CTD S2 phosphorylation controls nucleosome dynamics in the promoter of a subset of 324 genes, including the regulators of cell differentiation ste11 and metabolic adaptation inv1. Mechanistic studies on these genes indicate that during gene activation a local increase of phospho-S2 CTD nearby the promoter impairs the phospho-S5 CTD-dependent recruitment of Set1 and the subsequent recruitment of specific HDACs, which leads to nucleosome depletion and efficient transcription.
View Article and Find Full Text PDFNucleosomes are the basic structural units of chromatin. Most of the yeast genome is organized in a pattern of positioned nucleosomes that is stably maintained under a wide range of physiological conditions. In this work, we have searched for sequence determinants associated with positioned nucleosomes in four species of fission and budding yeasts.
View Article and Find Full Text PDFNuclear RNAi is an important regulator of transcription and epigenetic modification, but the underlying mechanisms remain elusive. Using a genome-wide approach in the fission yeast S. pombe, we have found that Dcr1, but not other components of the canonical RNAi pathway, promotes the release of Pol II from the 3? end of highly transcribed genes, and, surprisingly, from antisense transcription of rRNA and tRNA genes, which are normally transcribed by Pol I and Pol III.
View Article and Find Full Text PDFNucleosomes contribute to compacting the genome into the nucleus and regulate the physical access of regulatory proteins to DNA either directly or through the epigenetic modifications of the histone tails. Precise mapping of nucleosome positioning across the genome is, therefore, essential to understanding the genome regulation. In recent years, several experimental protocols have been developed for this purpose that include the enzymatic digestion, chemical cleavage or immunoprecipitation of chromatin followed by next-generation sequencing of the resulting DNA fragments.
View Article and Find Full Text PDFBackground: Eukaryotic genomes are replicated during S phase according to a temporal program. Several determinants control the timing of origin firing, including the chromatin environment and epigenetic modifications. However, how chromatin structure influences the timing of the activation of specific origins is still poorly understood.
View Article and Find Full Text PDFPTPN13 is a high-molecular weight intracellular phosphatase with several isoforms that exhibits a highly modular structure. Although in recent years different roles have been described for PTPN13, we are still far from understanding its function in cell biology. Here we show that PTPN13 expression is activated during megakaryocytic differentiation at the protein and mRNA level.
View Article and Find Full Text PDF