Publications by authors named "Anten N"

Article Synopsis
  • - Uganda holds unexplored genetic material that may be drought-resistant, potentially aiding the development of climate-resilient plant varieties.
  • - A study analyzed 148 genotypes (wild, feral, and cultivated) under different water conditions, measuring factors like leaf area and biomass allocation, using advanced statistical models.
  • - Results show that restricted water supply decreased growth parameters across different genetic groups and locations, indicating a trade-off in growth tolerance; some drought tolerance traits were linked to local climate conditions.
View Article and Find Full Text PDF

Nitrogen (N) utilization for crop production under N deficiency conditions is subject to a trade-off between maintaining specific leaf N content (SLN) important for radiation-use efficiency versus maintaining leaf area (LA) development, important for light capture. This paper aims to explore how maize deals with this trade-off through responses in SLN, LA and their underlying traits during the vegetative and reproductive growth stages. In a 10-year N fertilization trial in Jilin province, Northeast China, three N fertilizer levels have been maintained: N deficiency (N0), low N supply (N1) and high N supply (N2).

View Article and Find Full Text PDF

Plant responses to abiotic stresses are complex and dynamic, and involve changes in different traits, either as the direct consequence of the stress, or as an active acclimatory response. Abiotic stresses frequently occur simultaneously or in succession, rather than in isolation. Despite this, most studies have focused on a single stress and single or few plant traits.

View Article and Find Full Text PDF

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured.

View Article and Find Full Text PDF
Article Synopsis
  • Understanding how plant populations, specifically Coffea canephora in Uganda, are vulnerable to climate change can help in conserving biodiversity and identifying strong breeding candidates.
  • A genomic study was conducted on 207 coffee trees, identifying 71 genetic markers (SNPs) that are likely adaptive to climate changes, linked to important traits like stress resilience and pest resistance.
  • Genetic differences reveal varying levels of adaptability among populations, with some regions showing more potential maladaptation, which can inform conservation strategies for preserving these coffee populations amid climate shifts.*
View Article and Find Full Text PDF

Root competition is a key factor determining plant performance, community structure and ecosystem productivity. To adequately estimate the extent of root proliferation of plants in response to neighbours independently of nutrient availability, one should use a set-up that can simultaneously control for both nutrient concentration and soil volume at plant individual level. With a mesh-divider design, which was suggested as a promising solution for this problem, we conducted two intraspecific root competition experiments: one with soybean () and the other with sunflower ().

View Article and Find Full Text PDF

Wild genetic resources and their ability to adapt to environmental change are critically important in light of the projected climate change, while constituting the foundation of agricultural sustainability. To address the expected negative effects of climate change on Robusta coffee trees (Coffea canephora), collecting missions were conducted to explore its current native distribution in Uganda over a broad climatic range. Wild material from seven forests could thus be collected.

View Article and Find Full Text PDF

The phenomenon that organisms can distinguish genetically related individuals from strangers (i.e., kin recognition) and exhibit more cooperative behaviours towards their relatives (i.

View Article and Find Full Text PDF

Plants grow in dense stands receive light signals of varying strength from all directions. Plant responses to light signals from below should be considered in light‐mediated plant interactions, as their consequences for plant performance differ among ecological and agricultural settings. Where to perceive, how to integrate and what type of responses can be induced by light signals from below are major questions that need to be solved to expand our understanding of light‐mediated plant interactions.

View Article and Find Full Text PDF

In vegetation stands, plants receive red to far-red ratio (R:FR) signals of varying strength from all directions. However, plant responses to variations in R:FR reflected from below have been largely ignored despite their potential consequences for plant performance. Using a heterogeneous rose canopy, which consists of bent shoots down in the canopy and vertically growing upright shoots, we quantified upward far-red reflection by bent shoots and its consequences for upright shoot architecture.

View Article and Find Full Text PDF

Organ temperature and variation therein plays a key role in plant functioning and its responses to e.g. climate change.

View Article and Find Full Text PDF

Background: Seed size and number are important plant traits from an ecological and horticultural/agronomic perspective. However, in small-seeded species such as , research on seed size and number is limited by the absence of suitable high throughput phenotyping methods.

Results: We report on the development of a high throughput method for counting seeds and measuring individual seed sizes.

View Article and Find Full Text PDF
Article Synopsis
  • Plant traits, which include various characteristics like morphology and physiology, play a crucial role in how plants interact with their environment and impact ecosystems, making them essential for research in areas like ecology, biodiversity, and environmental management.
  • The TRY database, established in 2007, has become a vital resource for global plant trait data, promoting open access and enabling researchers to identify and fill data gaps for better ecological modeling.
  • Although the TRY database provides extensive data, there are significant areas lacking consistent measurements, particularly for continuous traits that vary among individuals in their environments, presenting a major challenge that requires collaboration and coordinated efforts to address.
View Article and Find Full Text PDF

Background And Aims: Shading by an overhead canopy (i.e. canopy shading) entails simultaneous changes in both photosynthetically active radiation (PAR) and red to far-red ratio (R:FR).

View Article and Find Full Text PDF

Background And Aims: The success of using bent shoots in cut-rose (Rosa hybrida) production to improve flower shoot quality has been attributed to bent shoots capturing more light and thus providing more assimilates for flower shoot growth. We aimed at quantifying this contribution of photosynthesis by bent shoots to flower shoot growth.

Methods: Rose plants were grown with four upright flower shoots and with no, one or three bent shoots per plant.

View Article and Find Full Text PDF

Phenotypic plasticity is a vital strategy for plants to deal with changing conditions by inducing phenotypes favourable in different environments. Understanding how natural selection acts on variation in phenotypic plasticity in plants is therefore a central question in ecology, but is often ignored in modelling studies. Here we present a new modelling approach that allows for the analysis of selection for variation in phenotypic plasticity as a response strategy.

View Article and Find Full Text PDF

Plants can detect the presence of their neighbors belowground, often responding with changes in root growth for resource competition. Recent evidence also implies that perception of neighbors may also elicit defense responses, however, the associated metabolic activities are unclear. We investigated primary and defense-related secondary metabolisms and hormone expressions in tobaccos () grown either with own roots or roots of another conspecifics in hydroponic condition.

View Article and Find Full Text PDF

Introduction: Defoliation and light competition are ubiquitous stressors that can strongly limit plant performance. Tolerance to defoliation is often associated with compensatory growth, which could be positively or negatively related to plant growth. Genetic variation in growth, tolerance and compensation, in turn, plays an important role in the evolutionary adaptation of plants to changing disturbance regimes but this issue has been poorly investigated for long-lived woody species.

View Article and Find Full Text PDF

Plants balance the allocation of resources between growth and defence to optimize fitness in a competitive environment. Perception of neighbour-detection cues, such as a low ratio of red to far-red (R:FR) radiation, activates a suite of shade-avoidance responses that include stem elongation and upward leaf movement, whilst simultaneously downregulating defence. This downregulation is hypothesized to benefit the plant either by mediating the growth-defence balance in favour of growth in high plant densities or, alternatively, by mediating defence of individual leaves such that those most photosynthetically productive are best protected.

View Article and Find Full Text PDF

Diel stem diameter changes measured at the stem base of temperate tree species can be mostly explained by a hydraulic system of flow and storage compartments passively driven by transpiration. Active, osmotic processes are considered to play a minor role only. Here we explore whether such osmotic processes have a stronger impact on diel changes in twig diameter than in stem diameter because twigs are closer to the leaves, the main source of newly acquired carbon.

View Article and Find Full Text PDF

Plant species mixtures improve productivity over monocultures by exploiting species complementarities for resource capture in time and space. Complementarity results in part from competition avoidance responses that maximize resource capture and growth of individual plants. Individual organs accommodate to local resource levels, e.

View Article and Find Full Text PDF

Wood density (WD) is believed to be a key trait in driving growth strategies of tropical forest species, and as it entails the amount of mass per volume of wood, it also tends to correlate with forest carbon stocks. Yet there is relatively little information on how interspecific variation in WD correlates with biomass dynamics at the species and population level. We determined changes in biomass in permanent plots in a logged forest in Vietnam from 2004 to 2012, a period representing the last 8 years of a 30 years logging cycle.

View Article and Find Full Text PDF