Publications by authors named "Antara Rao"

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder characterized by heterogeneous molecular changes across diverse cell types, posing significant challenges for treatment development. To address this, we introduced a cell-type-specific, multi-target drug discovery strategy grounded in human data and real-world evidence. This approach integrates single-cell transcriptomics, drug perturbation databases, and clinical records.

View Article and Find Full Text PDF

Despite strong evidence supporting the important roles of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-related AD pathogenesis remain elusive. To examine such effects, we utilized microglial depletion in a chimeric model with induced pluripotent stem cell (iPSC)-derived human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) iPSC-derived human neurons into the hippocampus of human APOE3 or APOE4 knockin mice and then depleted microglia in half of the chimeric mice.

View Article and Find Full Text PDF

Despite strong evidence supporting the involvement of both apolipoprotein E4 (APOE4) and microglia in Alzheimer's Disease (AD) pathogenesis, the effects of microglia on neuronal APOE4-driven AD pathogenesis remain elusive. Here, we examined such effects utilizing microglial depletion in a chimeric model with human neurons in mouse hippocampus. Specifically, we transplanted homozygous APOE4, isogenic APOE3, and APOE-knockout (APOE-KO) induced pluripotent stem cell (iPSC)-derived human neurons into the hippocampus of human APOE3 or APOE4 knock-in mice, and depleted microglia in half the chimeric mice.

View Article and Find Full Text PDF

Apolipoprotein E4 (APOE4) is the strongest genetic risk factor for late-onset Alzheimer's disease (LOAD), leading to earlier age of clinical onset and exacerbating pathologies. There is a critical need to identify protective targets. Recently, a rare APOE variant, APOE3-R136S (Christchurch), was found to protect against early-onset AD in a PSEN1-E280A carrier.

View Article and Find Full Text PDF

ApoE4 is the primary risk factor for Alzheimer's Disease. While apoE is primarily expressed by astrocytes, AD pathology including endosomal abnormalities and mitochondrial dysfunction first occurs in neurons. Lysosomes are poised at the convergence point between these features.

View Article and Find Full Text PDF

Apolipoprotein E4 (APOE4) is an important driver of Tau pathology, gliosis, and degeneration in Alzheimer's disease (AD). Still, the mechanisms underlying these APOE4-driven pathological effects remain elusive. Here, we report in a tauopathy mouse model that APOE4 promoted the nucleocytoplasmic translocation and release of high-mobility group box 1 (HMGB1) from hippocampal neurons, which correlated with the severity of hippocampal microgliosis and degeneration.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how the APOE4 gene affects brain function related to Alzheimer's disease, showing that young mice with this gene variant exhibit hyperexcitability in specific regions of the hippocampus.
  • This hyperexcitability, linked to smaller, overactive neurons, seems to predict cognitive decline as the mice age.
  • The research identifies increased levels of the gene Nell2 in these mice, suggesting that targeting Nell2 could help reverse the neuronal excitability issues associated with APOE4, shedding light on potential mechanisms underlying Alzheimer’s disease progression.
View Article and Find Full Text PDF

Apolipoprotein E4 (APOE4) is the strongest known genetic risk factor for late-onset Alzheimer's disease (AD). Conditions of stress or injury induce APOE expression within neurons, but the role of neuronal APOE4 in AD pathogenesis is still unclear. Here we report the characterization of neuronal APOE4 effects on AD-related pathologies in an APOE4-expressing tauopathy mouse model.

View Article and Find Full Text PDF

Specific classes of GABAergic neurons play specific roles in regulating information processing in the brain. In the hippocampus, two major classes, parvalbumin-expressing (PV) and somatostatin-expressing (SST), differentially regulate endogenous firing patterns and target subcellular compartments of principal cells. How these classes regulate the flow of information throughout the hippocampus is poorly understood.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a multifactorial neurodegenerative disorder that involves dysregulation of many cellular and molecular processes. It is notoriously difficult to develop therapeutics for AD due to its complex nature. Nevertheless, recent advancements in imaging technology and the development of innovative experimental techniques have allowed researchers to perform in-depth analyses to uncover the pathogenic mechanisms of AD.

View Article and Find Full Text PDF

Selective neurodegeneration is a critical causal factor in Alzheimer's disease (AD); however, the mechanisms that lead some neurons to perish, whereas others remain resilient, are unknown. We sought potential drivers of this selective vulnerability using single-nucleus RNA sequencing and discovered that ApoE expression level is a substantial driver of neuronal variability. Strikingly, neuronal expression of ApoE-which has a robust genetic linkage to AD-correlated strongly, on a cell-by-cell basis, with immune response pathways in neurons in the brains of wild-type mice, human ApoE knock-in mice and humans with or without AD.

View Article and Find Full Text PDF

Despite its clear impact on Alzheimer's disease (AD) risk, apolipoprotein (apo) E4's contributions to AD etiology remain poorly understood. Progress in answering this and other questions in AD research has been limited by an inability to model human-specific phenotypes in an in vivo environment. Here we transplant human induced pluripotent stem cell (hiPSC)-derived neurons carrying normal apoE3 or pathogenic apoE4 into human apoE3 or apoE4 knockin mouse hippocampi, enabling us to disentangle the effects of apoE4 produced in human neurons and in the brain environment.

View Article and Find Full Text PDF

Understanding why adult hippocampal neurogenesis (AHN) is impaired in Alzheimer's disease (AD) is essential for unravelling its role in pathogenesis. In this issue of Cell Stem Cell, Zheng et al. (2020) report that human tau accumulation in dentate gyrus GABAergic interneurons disrupts AHN and strengthening GABAergic signaling restores AHN and improves cognition in an AD mouse model.

View Article and Find Full Text PDF

Huntington disease (HD) is an inherited, progressive neurological disorder characterized by degenerating striatal medium spiny neurons (MSNs). One promising approach for treating HD is cell replacement therapy, where lost cells are replaced by MSN progenitors derived from human pluripotent stem cells (hPSCs). While there has been remarkable progress in generating hPSC-derived MSNs, current production methods rely on two-dimensional culture systems that can include poorly defined components, limit scalability, and yield differing preclinical results.

View Article and Find Full Text PDF

Oligodendrocyte precursor cells (OPCs) offer considerable potential for the treatment of demyelinating diseases and injuries of the CNS. However, generating large quantities of high-quality OPCs remains a substantial challenge that impedes their therapeutic application. Here, we show that OPCs can be generated from human pluripotent stem cells (hPSCs) in a three-dimensional (3D), scalable, and fully defined thermoresponsive biomaterial system.

View Article and Find Full Text PDF

Cell replacement therapies have broad biomedical potential; however, low cell survival and poor functional integration post-transplantation are major hurdles that hamper clinical benefit. For example, following striatal transplantation of midbrain dopaminergic (mDA) neurons for the treatment of Parkinson's disease (PD), only 1-5% of the neurons typically survive in preclinical models and in clinical trials. In general, resource-intensive generation and implantation of larger numbers of cells are used to compensate for the low post-transplantation cell-survival.

View Article and Find Full Text PDF

Pluripotent stem cells (PSCs) have major potential as an unlimited source of functional cells for many biomedical applications; however, the development of cell manufacturing systems to enable this promise faces many challenges. For example, there have been major recent advances in the generation of midbrain dopaminergic (mDA) neurons from stem cells for Parkinson's Disease (PD) therapy; however, production of these cells typically involves undefined components and difficult to scale 2D culture formats. Here, we used a fully defined, 3D, thermoresponsive biomaterial platform to rapidly generate large numbers of action-potential firing mDA neurons after 25 days of differentiation (~40% tyrosine hydroxylase (TH) positive, maturing into 25% cells exhibiting mDA neuron-like spiking behavior).

View Article and Find Full Text PDF

Layer (L)2 is a major output of primary sensory cortex that exhibits very sparse spiking, but the structure of sensory representation in L2 is not well understood. We combined two-photon calcium imaging with deflection of many whiskers to map whisker receptive fields, characterize sparse coding, and quantitatively define the point representation in L2 of mouse somatosensory cortex. Neurons within a column-sized imaging field showed surprisingly heterogeneous, salt-and-pepper tuning to many different whiskers.

View Article and Find Full Text PDF