The host immune responses play a pivotal role in the establishment of long-term memory responses, which effectively aids in infection clearance. However, the prevailing anti-tuberculosis therapy, while aiming to combat tuberculosis (TB), also debilitates innate and adaptive immune components of the host. In this study, we explored how the front-line anti-TB drugs impact the host immune cells by modulating multiple signaling pathways and subsequently leading to disease relapse.
View Article and Find Full Text PDF() effectively manipulates the host processes to establish the deadly respiratory disease, Tuberculosis (TB). has developed key mechanisms to disrupt the host cell health to combat immune responses and replicate efficaciously. antigens such as ESAT-6, 19kDa lipoprotein, Hip1, and Hsp70 destroy the integrity of cell organelles (Mitochondria, Endoplasmic Reticulum, Nucleus, Phagosomes) or delay innate/adaptive cell responses.
View Article and Find Full Text PDFThe ADP ribosylation factor like protein 15 (ARL15) gene encodes for an uncharacterized GTPase associated with rheumatoid arthritis (RA) and other metabolic disorders. Investigation of the structural and functional attributes of ARL15 is important to position the protein as a potential drug target. Using spectroscopy, we demonstrated that ARL15 exhibits properties inherent of GTPases.
View Article and Find Full Text PDFTuberculosis (TB) still tops the list of global health burdens even after COVID-19. However, it will sooner transcend the current pandemic due to the prevailing risk of reactivation of latent TB in immunocompromised individuals. The indiscriminate misuse and overuse of antibiotics have resulted in the emergence of deadly drug-resistant variants of Mycobacterium tuberculosis ().
View Article and Find Full Text PDFBacille Calmette-Guerin (BCG) generates limited long-lasting adaptive memory responses leading to short-lived protection against adult pulmonary tuberculosis (TB). Here, we show that host sirtuin 2 (SIRT2) inhibition by AGK2 significantly enhances the BCG vaccine efficacy during primary infection and TB recurrence through enhanced stem cell memory (T) responses. SIRT2 inhibition modulated the proteome landscape of CD4 T cells affecting pathways involved in cellular metabolism and T-cell differentiation.
View Article and Find Full Text PDFThe fate of Mycobacterium tuberculosis infection is governed by immune signaling pathways that can either eliminate the pathogen or result in tuberculosis (TB). Anti-TB therapy (ATT) is extensive and is efficacious only against active, drug-sensitive strains of M. tuberculosis.
View Article and Find Full Text PDF() is an intracellular pathogen that predominantly affects the alveolar macrophages in the respiratory tract. Upon infection, the activation of TLR2 and TLR4- mediated signaling pathways leads to lysosomal degradation of the bacteria. However, bacterium counteracts the host immune cells and utilizes them as a cellular niche for its survival.
View Article and Find Full Text PDF