We used structure guided mutagenesis and directed enzyme evolution to alter the specificity of the CG specific bacterial DNA (cytosine-5) methyltransferase M.MpeI. Methylation specificity of the M.
View Article and Find Full Text PDFUbiquitin carboxyl-terminal hydrolase L1 (UCHL1) is highly expressed in smokers, but little is known about the molecular mechanism of UCHL1 in airway epithelium and its possible role in affecting extracellular matrix (ECM) remodelling in the underlying submucosa. Since cigarette smoking is a major cause of lung diseases, we studied its effect on UCHL1 expression and DNA methylation patterns in human bronchial epithelial cells, obtained after laser capture micro-dissection (LCM) or isolated from residual tracheal/main stem bronchial tissue. Targeted regulation of UCHL1 expression CRISPR/dCas9 based-epigenetic editing was used to explore the function of UCHL1 in lung epithelium.
View Article and Find Full Text PDFPlasminogen activator, urokinase () is involved in cell migration, proliferation and tissue remodeling. upregulation is associated with an increase in aggressiveness, metastasis, and invasion of several cancer types, including breast cancer. In patients, this translates into decreased sensitivity to hormonal treatment, and poor prognosis.
View Article and Find Full Text PDFTargeted DNA methylation is a technique that aims to methylate cytosines in selected genomic loci. In the most widely used approach a CG-specific DNA methyltransferase (MTase) is fused to a sequence specific DNA binding protein, which binds in the vicinity of the targeted CG site(s). Although the technique has high potential for studying the role of DNA methylation in higher eukaryotes, its usefulness is hampered by insufficient methylation specificity.
View Article and Find Full Text PDFEpigenetic editing, an emerging technique used for the modulation of gene expression in mammalian cells, is a promising strategy to correct disease-related gene expression. Although epigenetic reprogramming results in sustained transcriptional modulation in several in vivo models, further studies are needed to develop this approach into a straightforward technology for effective and specific interventions. Important goals of current research efforts are understanding the context-dependency of successful epigenetic editing and finding the most effective epigenetic effector(s) for specific tasks.
View Article and Find Full Text PDFThe highly similar prokaryotic DNA (cytosine-5) methyltransferases (C5-MTases) M.MpeI and M.SssI share the specificity of eukaryotic C5-MTases (5'-CG), and can be useful research tools in the study of eukaryotic DNA methylation and epigenetic regulation.
View Article and Find Full Text PDFThe prokaryotic DNA(cytosine-5)methyltransferase M.SssI shares the specificity of eukaryotic DNA methyltransferases (CG) and is an important model and experimental tool in the study of eukaryotic DNA methylation. Previously, M.
View Article and Find Full Text PDFThe HNH family of endonucleases is characterized by a ββα metal-finger structural motif. Colicin E7 is a representative member of this family containing the strictly conserved HNH motif at its C-terminus. Structural and biochemical studies suggested that the HNH motif could contain all the residues necessary for metal ion binding and nuclease activity.
View Article and Find Full Text PDFBackground: Silencing mammalian genes by targeted DNA (cytosine-5) methylation of selected CG sites in the genome would be a powerful technique to analyze epigenomic information and to study the roles of DNA methylation in physiological and pathological states. A promising approach of targeted DNA methylation is based on the ability of split fragments of a monomeric DNA methyltransferase (C5-MTase) to associate and form active enzyme. A few C5-MTases of different specificities have been shown to possess the ability of fragment complementation, but a demonstration of this phenomenon for a C5-MTase, which has CG specificity and thus can be targeted to methylate any CG site, has been lacking.
View Article and Find Full Text PDFThe MvaI restriction endonuclease cuts 5'-CC↓AGG-3'/5'-CC↑TGG-3' sites as indicated by the arrows. N4-methylation of the inner cytosines (C(m4)CAGG/C(m4)CTGG) protects the site against MvaI cleavage. Here, we show that MvaI nicks the G-strand of the related sequence (CCGGG/CCCGG, BcnI site) if the inner cytosines are C5-methylated: C(m5)C↓GGG/CC(m5)CGG.
View Article and Find Full Text PDFThe epithelial cell adhesion molecule (EpCAM) is a membrane glycoprotein that has been identified as a marker of cancer-initiating cells. EpCAM is highly expressed on most carcinomas, and transient silencing of EpCAM expression leads to reduced oncogenic potential. To silence the EpCAM gene in a persistent manner via targeted DNA methylation, a low activity mutant (C141S) of the CpG-specific DNA methyltransferase M.
View Article and Find Full Text PDFThe GGCC-specific restriction endonuclease BspRI is one of the few Type IIP restriction endonucleases, which were suggested to be a monomer. Amino acid sequence information obtained by Edman sequencing and mass spectrometry analysis was used to clone the gene encoding BspRI. The bspRIR gene is located adjacently to the gene of the cognate modification methyltransferase and encodes a 304 aa protein.
View Article and Find Full Text PDFTo characterize important steps of DNA methylation by M.SssI, a prokaryotic DNA-(cytosine C5)-methyltransferase (C5-MTase) sharing the specificity of eukaryotic C5-MTases (5'-CG-3'), ten amino acids, selected on the basis of sequence alignments and a computational model, were subjected to mutational analysis. Wild-type and mutant M.
View Article and Find Full Text PDFThe SinI DNA methyltransferase, a component of the SinI restriction-modification system, recognizes the sequence GG(A/T)CC and methylates the inner cytosine to produce 5-methylcytosine. Previously isolated relaxed-specificity mutants of the enzyme also methylate, at a lower rate, GG(G/C)CC sites. In this work we tested the capacity of the mutant enzymes to function in vivo as the counterpart of a restriction endonuclease, which can cleave either site.
View Article and Find Full Text PDFUpon induction, Bacillus megaterium 216 produces the bacteriocin megacin A-216, which leads to lysis of the producer cell and kills B. megaterium and a few other bacterial species. The DNA region responsible for megacinogeny was cloned in B.
View Article and Find Full Text PDFThe epithelial cell adhesion molecule (EpCAM) is expressed at high levels on the surface of most carcinoma cells. SiRNA silencing of EpCAM expression leads to reduced metastatic potential of tumor cells demonstrating its importance in oncogenesis and tumor progression. However, siRNA therapy requires either sequential delivery or integration into the host cell genome.
View Article and Find Full Text PDFCationic liposomal compounds are widely used to introduce DNA and siRNA into viable cells, but none of these compounds are also capable of introducing proteins. Here we describe the use of a cationic amphiphilic lipid SAINT-2:DOPE for the efficient delivery of proteins into cells (profection). Labeling studies demonstrated equal delivery efficiency for protein as for DNA and siRNA.
View Article and Find Full Text PDFTo test their structural and functional similarity, hybrids were constructed between EcoRI and RsrI, two restriction endonucleases recognizing the same DNA sequence and sharing 50% amino acid sequence identity. One of the chimeric proteins (EERE), in which the EcoRI segment His147-Ala206 was replaced with the corresponding RsrI segment, showed EcoRI/RsrI-specific endonuclease activity. EERE purified from inclusion bodies was found to have approximately 100-fold weaker activity but higher specific DNA binding affinity, than EcoRI.
View Article and Find Full Text PDFCaging of proteins by conjugation with a photocleavable group is a powerful approach for reversibly blocking enzymatic activity. Here we describe the covalent modification of the bacterial SssI DNA methyltransferase (M.SssI) with the cysteine-specific reagent 4,5-dimethoxy-2-nitrobenzylbromide (DMNBB).
View Article and Find Full Text PDFThe gene coding for the SinI DNA-methyltransferase, a modification enzyme able to recognize and methylate the internal cytosine of the GG(A)/(T)CC sequence, was subjected to in vitro mutagenesis, DNA-shuffling and a strong selection for relaxed GGNCC recognition specificity. As a result of this in vitro evolution experiment, a mutant gene with the required phenotype was selected. The mutant SinI methyltransferase carried five amino acid substitutions.
View Article and Find Full Text PDFA nomenclature is described for restriction endonucleases, DNA methyltransferases, homing endonucleases and related genes and gene products. It provides explicit categories for the many different Type II enzymes now identified and provides a system for naming the putative genes found by sequence analysis of microbial genomes.
View Article and Find Full Text PDF