Publications by authors named "Ansuman Satpathy"

The widespread application of genome editing to treat and cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped delivery vehicles (EDVs) are engineered virally derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication proteins in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing identifies rare populations that express specific marker transcript combinations, traditional flow sorting requires cell surface markers with high-fidelity antibodies, limiting our ability to interrogate these populations. In addition, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers.

View Article and Find Full Text PDF
Article Synopsis
  • Low intra-tumor heterogeneity (ITH) is linked to better patient survival and response to immunotherapy, but the role of immune factors in tumor aggressiveness remains unclear.
  • Researchers studied immune escape mechanisms in mouse tumors with low ITH, finding non-rejected clones had more tumor-associated macrophages and T-cell exhaustion compared to rejected ones.
  • They identified Mif as a key factor in immune rejection; knocking it out led to smaller tumors and lower macrophage infiltration, a finding that was supported by data from melanoma patients.
View Article and Find Full Text PDF

Immune checkpoint inhibitors such as anti-PD-1 antibodies (aPD1) can be effective in treating advanced cancers. However, many patients do not respond and the mechanisms underlying these differences remain incompletely understood. In this study, we profile a cohort of patients with locally-advanced or metastatic basal cell carcinoma undergoing aPD-1 therapy using single-cell RNA sequencing, high-definition spatial transcriptomics in tumors and draining lymph nodes, and spatial immunoreceptor profiling, with long-term clinical follow-up.

View Article and Find Full Text PDF

The ability of cells to maintain distinct identities and respond to transient environmental signals requires tightly controlled regulation of gene networks. These dynamic regulatory circuits that respond to extracellular cues in primary human cells remain poorly defined. The need for context-dependent regulation is prominent in T cells, where distinct lineages must respond to diverse signals to mount effective immune responses and maintain homeostasis.

View Article and Find Full Text PDF

The oncogenic Epstein-Barr virus (EBV) can drive tumorigenesis with disrupted host immunity, causing malignancies including post-transplant lymphoproliferative disorders (PTLDs). PTLD can also arise in the absence of EBV, but the biological differences underlying EBV(+) and EBV(-) B cell PTLD and the associated host-EBV-tumor interactions remain poorly understood. Here, we reveal the core differences between EBV(+) and EBV(-) PTLD, characterized by increased expression of genes related to immune processes or DNA interactions, respectively, and the augmented ability of EBV(+) PTLD B cells to modulate the tumor microenvironment through elaboration of monocyte-attracting cytokines/chemokines.

View Article and Find Full Text PDF

Mapping enhancers and their target genes in specific cell types is crucial for understanding gene regulation and human disease genetics. However, accurately predicting enhancer-gene regulatory interactions from single-cell datasets has been challenging. Here, we introduce a new family of classification models, scE2G, to predict enhancer-gene regulation.

View Article and Find Full Text PDF

Tissue-resident memory T (T) cells are integral to tissue immunity, persisting in diverse anatomical sites where they adhere to a common transcriptional framework. How these cells integrate distinct local cues to adopt the common T cell fate remains poorly understood. Here, we show that whereas skin T cells strictly require transforming growth factor β (TGF-β) for tissue residency, those in other locations utilize the metabolite retinoic acid (RA) to drive an alternative differentiation pathway, directing a TGF-β-independent tissue residency program in the liver and synergizing with TGF-β to drive T cells in the small intestine.

View Article and Find Full Text PDF

The widespread application of genome editing to treat or even cure disease requires the delivery of genome editors into the nucleus of target cells. Enveloped Delivery Vehicles (EDVs) are engineered virally-derived particles capable of packaging and delivering CRISPR-Cas9 ribonucleoproteins (RNPs). However, the presence of lentiviral genome encapsulation and replication components in EDVs has obscured the underlying delivery mechanism and precluded particle optimization.

View Article and Find Full Text PDF

The memory CD8 T cell pool contains phenotypically and transcriptionally heterogeneous subsets with specialized functions and recirculation patterns. Here, we examined the epigenetic landscape of CD8 T cells isolated from seven non-lymphoid organs across four distinct infection models, alongside their circulating T cell counterparts. Using single-cell transposase-accessible chromatin sequencing (scATAC-seq), we found that tissue-resident memory T (T) cells and circulating memory T (T) cells develop along distinct epigenetic trajectories.

View Article and Find Full Text PDF

Tumor metastasis requires systemic remodeling of distant organ microenvironments that impacts immune cell phenotypes, population structure, and intercellular communication. However, our understanding of immune phenotypic dynamics in the metastatic niche remains incomplete. Here, we longitudinally assayed lung immune transcriptional profiles in the polyomavirus middle T antigen (PyMT) and 4T1 metastatic breast cancer models from primary tumorigenesis, through pre-metastatic niche formation, to the final stages of metastatic outgrowth at single-cell resolution.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied how cis-regulatory elements (CREs) work with trans regulators to control the expression of T cell genes CD28, CTLA4, and ICOS, which are important for immune responses.
  • Using CRISPR interference (CRISPRi) screens, they identified specific CREs that vary depending on the type of T cell and stimulation, revealing the complexity of gene regulation.
  • They found that the CCCTC-binding factor (CTCF) plays a key role in enhancing the interaction between CREs and CTLA4 while also preventing unintended activation of CD28, helping to clarify the regulatory landscape of these immune genes.
View Article and Find Full Text PDF

Concurrent readout of sequence and base modifications from long unamplified DNA templates by Pacific Biosciences of California (PacBio) single-molecule sequencing requires large amounts of input material. Here we adapt Tn5 transposition to introduce hairpin oligonucleotides and fragment (tagment) limiting quantities of DNA for generating PacBio-compatible circular molecules. We developed two methods that implement tagmentation and use 90-99% less input than current protocols: (1) single-molecule real-time sequencing by tagmentation (SMRT-Tag), which allows detection of genetic variation and CpG methylation; and (2) single-molecule adenine-methylated oligonucleosome sequencing assay by tagmentation (SAMOSA-Tag), which uses exogenous adenine methylation to add a third channel for probing chromatin accessibility.

View Article and Find Full Text PDF

Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq.

View Article and Find Full Text PDF

A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells.

View Article and Find Full Text PDF

Single-cell genomics technologies have accelerated our understanding of cell-state heterogeneity in diverse contexts. Although single-cell RNA sequencing (scRNA-seq) identifies many rare populations of interest that express specific marker transcript combinations, traditional flow sorting limits our ability to enrich these populations for further profiling, including requiring cell surface markers with high-fidelity antibodies. Additionally, many single-cell studies require the isolation of nuclei from tissue, eliminating the ability to enrich learned rare cell states based on extranuclear protein markers.

View Article and Find Full Text PDF

3-dimensional (3D) genome conformation is central to gene expression regulation, yet our understanding of its contribution to rapid transcriptional responses, signal integration, and memory in immune cells is limited. Here, we study the molecular regulation of the inflammatory response in primary macrophages using integrated transcriptomic, epigenomic, and chromosome conformation data, including base pair-resolution Micro-Capture C. We demonstrate that interleukin-4 (IL-4) primes the inflammatory response in macrophages by stably rewiring 3D genome conformation, juxtaposing endotoxin-, interferon-gamma-, and dexamethasone-responsive enhancers in close proximity to their cognate gene promoters.

View Article and Find Full Text PDF
Article Synopsis
  • Adenosine (Ado) plays a role in suppressing immune responses in tumors, and exhausted CD8 CAR-T cells express enzymes CD39 and CD73 that contribute to Ado production.
  • Researchers attempted to improve CAR-T cell effectiveness by knocking out these enzymes or an adenosine receptor, but saw only minor improvements.
  • However, overexpressing adenosine deaminase (ADA-OE) to convert Ado to inosine (INO) notably enhanced CAR-T cell function, stemness, and metabolic reprogramming, leading to superior CAR-T products suitable for clinical use.
View Article and Find Full Text PDF

Decreased intra-tumor heterogeneity (ITH) correlates with increased patient survival and immunotherapy response. However, even highly homogenous tumors may display variability in their aggressiveness, and how immunologic-factors impinge on their aggressiveness remains understudied. Here we studied the mechanisms responsible for the immune-escape of murine tumors with low ITH.

View Article and Find Full Text PDF
Article Synopsis
  • - Poor persistence of CAR T cells limits their effectiveness against B cell malignancies and solid tumors, and memory-associated genes like TCF1 play a role in enhancing long-term patient response.
  • - The study identifies FOXO1 as a key transcription factor that promotes memory programs in CAR T cells, helping prevent cell exhaustion and improving antitumor activity when expressed at higher levels.
  • - Enhancing FOXO1 in CAR T cells leads to better functionality, memory potential, and persistence, indicating its clinical importance for improving cancer immunotherapy outcomes.
View Article and Find Full Text PDF

Cell therapies have yielded durable clinical benefits for patients with cancer, but the risks associated with the development of therapies from manipulated human cells are understudied. For example, we lack a comprehensive understanding of the mechanisms of toxicities observed in patients receiving T cell therapies, including recent reports of encephalitis caused by reactivation of human herpesvirus 6 (HHV-6). Here, through petabase-scale viral genomics mining, we examine the landscape of human latent viral reactivation and demonstrate that HHV-6B can become reactivated in cultures of human CD4 T cells.

View Article and Find Full Text PDF

Relapse of acute myeloid leukemia (AML) is highly aggressive and often treatment refractory. We analyzed previously published AML relapse cohorts and found that 40% of relapses occur without changes in driver mutations, suggesting that non-genetic mechanisms drive relapse in a large proportion of cases. We therefore characterized epigenetic patterns of AML relapse using 26 matched diagnosis-relapse samples with ATAC-seq.

View Article and Find Full Text PDF
Article Synopsis
  • CRISPR-Cas9 genome editing is advancing T cell therapies, but there's a concern about the loss of targeted chromosomes, which could impact safety.
  • A study showed that chromosome loss is widespread in primary human T cells and can occur with both partial and complete chromosome loss, even in preclinical therapies.
  • The researchers developed a modified manufacturing process that reduces chromosome loss while maintaining the effectiveness of genome editing, finding that p53 expression might help protect against this issue in clinical applications.
View Article and Find Full Text PDF

Chronic stimulation can cause T cell dysfunction and limit the efficacy of cellular immunotherapies. Improved methods are required to compare large numbers of synthetic knockin (KI) sequences to reprogram cell functions. Here, we developed modular pooled KI screening (ModPoKI), an adaptable platform for modular construction of DNA KI libraries using barcoded multicistronic adaptors.

View Article and Find Full Text PDF