We demonstrate the existence of unconventional rheological and memory properties in systems of soft-deformable particles whose energy depends on their shape, via numerical simulations. At large strains, these systems experience an unconventional shear weakening transition characterized by an increase in the mechanical energy and a drastic drop in shear stress, which stems from the emergence of short-ranged tetratic order. In these weakened states, the contact network evolves reversibly under strain reversal, keeping memory of its initial state, while the microscopic dynamics is irreversible.
View Article and Find Full Text PDFIn many biological processes, such as wound healing, cell tissues undergo an epithelial-to-mesenchymal transition, which is a transition from a more rigid to a more fluid state. Here, we investigate the solid/fluid transition of cell tissues within the framework of the self-propelled Voronoi model, which accounts for the deformability of the cells, for their many-body interactions, and for their polarized motility. The transition is controlled by two parameters, respectively accounting for the strength of the self-propelling force of the cells, and for the mechanical rigidity of the cells.
View Article and Find Full Text PDF