Covering: up to 2023Short-chain dehydrogenase/reductases (SDR) are known to catalyze the regio- and stereoselective reduction of a variety of substrate types. Investigations of the deoxygenation of emodin to chrysophanol has led to the discovery of the anthrol reductase activity of an SDR, MdpC involved in monodictyphenone biosynthesis of and provided access to ()-dihydroanthracenone, a putative biosynthetic intermediate. This facilitated the identification of several MdpC-related enzymes involved in the biosynthesis of aflatoxins B1, cladofulvin, neosartorin, agnestins and bisanthraquinones.
View Article and Find Full Text PDFHerein, the asymmetric and chemoenzymatic synthesis of ()-nodulone C, -nodulone D and related ()-dihydronaphthalenone is reported. It involves multistep chemical synthesis of putative biosynthetic substrates followed by regio- and stereoselective reduction using a NADPH-dependent tetrahydroxynaphthalene reductase of to obtain chiral nodulones in a biomimetic fashion.
View Article and Find Full Text PDFHerein, we report two methods for the synthesis of the osteoarthritis drug rhein and its prodrug diacerein using a chemoenzymatic approach. The strategy relies on the use of an NADPH-dependent anthrol reductase of (ARti-2), which mediates the regioselective and reductive deoxygenation of anthraquinones. The work further implies similar biosynthesis of rhein in fungi.
View Article and Find Full Text PDFA chemoenzymatic reduction of citreorosein by the NADPH-dependent polyhydroxyanthracene reductase from Cochliobolus lunatus or MdpC from Aspergillus nidulans in the presence of NaSO gave access to putative biosynthetic intermediates, (R)-3,8,9,10-tetrahydroxy-6-(hydroxymethyl)-3,4-dihydroanthracene-1(2H)-one and its oxidized form, (R)-3,4-dihydrocitreorosein. Herein, we discuss the implications of these results towards the (bio)synthesis of aloe-emodin and (+)-rugulosin C in fungi.
View Article and Find Full Text PDF