Publications by authors named "Anshu Gaur"

With the commencement of the COVID-19 pandemic, social distancing and quarantine are becoming essential practices in the world. IoT health monitoring systems prevent frequent visits to doctors and meetings between patients and medical professionals. However, many individuals require regular health monitoring and observation through medical staff.

View Article and Find Full Text PDF

Hybrid carbon nanostructures based on the sp hybridized allotropes of carbon, such as graphene and single-walled carbon nanotubes (SWCNTs), hold vast potential for applications in electronics of various forms. Electronic properties of such hybrid structures are modified due to the interaction between atoms of the components, which can be utilized to tailor the properties of the hybrid structures to suite the application. In this study, we have explored charge (electron) transport through the hybrid structures of single-layer graphene (SLG) and SWCNTs (both metallic and semiconducting) using the nonequilibrium Green's function formalism within the framework of tight-binding density functional theory.

View Article and Find Full Text PDF

Hybrid carbon nanostructures based on single walled carbon nanotubes (SWNTs) and single layer graphene (SLG) have drawn much attention lately for their applications in a range of efficient hybrid devices. A few recent studies, addressing the interaction behavior at the heterojunction, considered charge transfer between the constituents (SWNTs and SLG) to be responsible for changes in the electronic and vibrational properties of their hybrid system. We report the effect of various factors, arising due to the interactions between the atoms of SWNTs and SLG, on the structural and vibrational properties of hybrid nanostructures investigated computationally within the framework of tight-binding DFT.

View Article and Find Full Text PDF

We discuss the efficacy of evolutionary method for the purpose of structural analysis of amorphous solids. At present, ab initio molecular dynamics (MD) based melt-quench technique is used and this deterministic approach has proven to be successful to study amorphous materials. We show that a stochastic approach motivated by Darwinian evolution can also be used to simulate amorphous structures.

View Article and Find Full Text PDF

Evolution of G-band modes of single metallic carbon nanotubes with the Fermi level shift is examined by simultaneous Raman and electron transport studies. Narrow Lorentzian line shape and upshifted frequencies are observed near the van Hove singularities. However, all G modes soften and broaden at the band crossing point.

View Article and Find Full Text PDF

This paper describes composite patterning elements that use a commercially available acryloxy perfluoropolyether (a-PFPE) in various soft lithographic techniques, including microcontact printing, nanotransfer printing, phase-shift optical lithography, proximity field nanopatterning, molecular scale soft nanoimprinting, and solvent assisted micromolding. The a-PFPE material, which is similar to a methacryloxy PFPE (PFPE-DMA) reported recently, offers a combination of high modulus (10.5 MPa), low surface energy (18.

View Article and Find Full Text PDF

A convenient process for generating large-scale, horizontally aligned arrays of pristine, single-walled carbon nanotubes (SWNTs) is described. The approach uses guided growth, by chemical vapor deposition (CVD), of SWNTs on miscut single-crystal quartz substrates. Studies of the growth reveal important relationships between the density and alignment of the tubes, the CVD conditions, and the morphology of the quartz.

View Article and Find Full Text PDF

Doping of individual single-walled carbon nanotubes via noncovalent adsorption of polyethylenimine which converts p-type semiconducting nanotubes into n-type is examined by micro-Raman studies. Distinctively different responses are observed in metallic and in semiconducting nanotubes. Very little or no changes in the radial breathing and the disorder modes are observed upon polymer adsorption on semiconducting carbon nanotubes indicating noncovalent nature of this process.

View Article and Find Full Text PDF

We report the implementation of three dimensionally cross-linked, organic nanodielectric multilayers as ultrathin gate dielectrics for a type of thin film transistor device that uses networks of single-walled carbon nanotubes as effective semiconductor thin films. Unipolar n- and p-channel devices are demonstrated by use of polymer coatings to control the behavior of the networks. Monolithically integrating these devices yields complementary logic gates.

View Article and Find Full Text PDF

Single-walled carbon nanotubes (SWNTs) demonstrate remarkable electronic and mechanical properties useful in developing areas such as nanoelectromechanical systems and flexible electronics. However, the highly inhomogeneous electronic distribution arising from different diameters and chirality in any given as-synthesized SWNT samples imposes severe limitations. Recently demonstrated selective chemical functionalization methods may provide a simple scalable means of eliminating metallic tubes from SWNT transistors and electronic devices.

View Article and Find Full Text PDF

Network behavior in single-walled carbon nanotubes (SWNTs) is examined by polymer electrolyte gating. High gate efficiencies, low voltage operation, and the absence of hysteresis in polymer electrolyte gating lead to a convenient and effective method of analyzing transport in SWNT networks. Furthermore, the ability to control carrier type with chemical groups of the host polymer allows us to examine both electron and hole conduction.

View Article and Find Full Text PDF