Publications by authors named "Ansgar Korf"

Untargeted mass spectrometry (MS) experiments produce complex, multidimensional data that are practically impossible to investigate manually. For this reason, computational pipelines are needed to extract relevant information from raw spectral data and convert it into a more comprehensible format. Depending on the sample type and/or goal of the study, a variety of MS platforms can be used for such analysis.

View Article and Find Full Text PDF

Trapped ion mobility spectrometry (TIMS) adds an additional separation dimension to mass spectrometry (MS) imaging, however, the lack of fragmentation spectra (MS) impedes confident compound annotation in spatial metabolomics. Here, we describe spatial ion mobility-scheduled exhaustive fragmentation (SIMSEF), a dataset-dependent acquisition strategy that augments TIMS-MS imaging datasets with MS spectra. The fragmentation experiments are systematically distributed across the sample and scheduled for multiple collision energies per precursor ion.

View Article and Find Full Text PDF

Progress in mass spectrometry lipidomics has led to a rapid proliferation of studies across biology and biomedicine. These generate extremely large raw datasets requiring sophisticated solutions to support automated data processing. To address this, numerous software tools have been developed and tailored for specific tasks.

View Article and Find Full Text PDF

Tattooing has become increasingly popular throughout society. Despite the recognized issue of adverse reactions in tattoos, regulations remain challenging with limited data available and a missing positive list. The diverse chemical properties of mostly insoluble inorganic and organic pigments pose an outstanding analytical challenge, which typically requires extensive sample preparation.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular networking helps connect mass spectra based on fragmentation similarities, but different ion species from the same molecule often remain unconnected, causing redundancies.
  • The Ion Identity Molecular Networking (IIMN) method was developed to improve connectivity by correlating chromatographic peak shapes, linking different ion species of the same molecule.
  • This enhancement allows for better identification of related molecules, discovery of unknown ion-ligand complexes, and broader access to public spectral libraries.
View Article and Find Full Text PDF

Introduction: Lipidomic profiling allows 100s if not 1000s of lipids in a sample to be detected and quantified. Modern lipidomics techniques are ultra-sensitive assays that enable the discovery of novel biomarkers in a variety of fields and provide new insight in mechanistic investigations. Despite much progress in lipidomics, there remains, as for all high throughput "omics" strategies, the need to develop strategies to standardize and integrate quality control into studies in order to enhance robustness, reproducibility, and usability of studies within specific fields and beyond.

View Article and Find Full Text PDF

Lipids, such for example the multifaceted category of glycerophospholipids (GP), play a major role in many biological processes. High-resolution mass spectrometry is able to identify these highly diverse lipid species in combination with fragmentation experiments (MS/MS) on the basis of the accurate / and fragmentation pattern. However, for the differentiation of isomeric lipids or isobaric interferences, more elaborate separation methods are required.

View Article and Find Full Text PDF
Article Synopsis
  • Molecular networking is a technique used to analyze and visualize chemical compounds in non-targeted mass spectrometry data.
  • Feature-based molecular networking (FBMN) is a new analysis method within the GNPS framework that improves the detection and organization of chemical features.
  • FBMN allows for better quantitative analysis and differentiation of isomers, including those examined through ion mobility spectrometry.
View Article and Find Full Text PDF

The anionic phospholipid class of cardiolipins (CL) is increasingly attracting scientific attention in the recent years. CL can be found as a functional component of mitochondrial membranes in almost all living organisms. Changes in the CL composition are favored by oxidative stress.

View Article and Find Full Text PDF

Gas chromatography-mass spectrometry profiling is the most established method for the analysis of organic residues, particularly lipids, from archaeological contexts. This technique allows the decryption of hidden chemical information associated with archaeological artefacts, such as ceramic pottery fragments. The molecular and isotopic compositions of such residues can be used to reconstruct past resource use, and hence address major questions relating to patterns of subsistence, diet and ritual practices in the past.

View Article and Find Full Text PDF

Technological advances in mass spectrometry (MS) toward more accurate and faster data acquisition result in highly informative but also more complex data sets. Especially the hyphenation of liquid chromatography (LC) and MS yields large data files containing a high amount of compound specific information. Using electrospray-ionization for compounds such as polymers enables highly sensitive detection, yet results in very complex spectra, containing multiply charged ions and adducts.

View Article and Find Full Text PDF

Rationale: Cardiolipins (CL) are a special lipid class which plays a main role in energy metabolism in mitochondria and is involved in apoptosis. In contrast to other glycerophospholipids, they contain four fatty acyl residues which results in a high structural diversity. Oxidation, for example by reactive oxygen species, or lyso forms such as monolyso-CL (MLCL), increases this diversity.

View Article and Find Full Text PDF

In recent years, proprietary and open-source bioinformatics software tools have been developed for the identification of lipids in complex biological samples based on high-resolution mass spectrometry data. These existent software tools often rely on publicly available lipid databases, such as LIPID MAPS, which, in some cases, only contain a limited number of lipid species for a specific lipid class. Other software solutions implement their own lipid species databases, which are often confined regarding implemented lipid classes, such as phospholipids.

View Article and Find Full Text PDF

Minor lipids in cereals (such as phytosterols and alkylresorcinols) can be important for human nutrition and/or be used as biomarkers for cereal intake. However, the analysis of cereal lipids is very challenging due to the complex lipidome comprising several hundred individual compounds present over a wide range of concentrations. Here we present a method for the profiling of cereal lipids using high temperature gas chromatography coupled to high resolution mass spectrometry (GC/Q-TOF MS).

View Article and Find Full Text PDF

Rationale: The potential of an atmospheric pressure ionization source based on a dielectric barrier discharge in helium for the hyphenation of gas chromatography and mass spectrometry (GC/DBDI-MS) has been demonstrated only recently and for a limited range of compounds. Due to its 'soft' ionization properties and the possibility to choose from a variety of atmospheric pressure ionization MS instruments, GC/DBDI-MS has the potential to be an interesting alternative to 'classic' GC/MS techniques.

Methods: The hyphenation of GC with DBDI-MS at atmospheric pressure is used for the determination of semifluorinated n-alkanes in ski wax samples.

View Article and Find Full Text PDF

Rationale: The rising field of lipidomics strongly relies on the identification of lipids in complex matrices. Recent technical advances regarding liquid chromatography (LC) and high-resolution mass spectrometry (HRMS) enable the mapping of the lipidome of an organism with short data acquisition times. However, interpretation and evaluation of resulting multidimensional datasets are challenging and this is still the bottleneck regarding overall analysis times.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionm38bqvon5tige7mrj0an153pagv90crv): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once