Central-line-associated bloodstream infection (CLABSI) rates are a key quality metric for comparing hospital quality and safety. Manual surveillance systems for CLABSIs are time-consuming and often limited to intensive care units (ICUs). A computer-automated method of CLABSI detection can improve the validity of surveillance.
View Article and Find Full Text PDFPrediction of nosocomial infections among patients is an important part of clinical surveillance programs to enable the related personnel to take preventive actions in advance. Designing a clinical surveillance program with capability of predicting nosocomial infections is a challenging task due to several reasons, including high dimensionality of medical data, heterogenous data representation, and special knowledge required to extract patterns for prediction. In this paper, we present details of six data mining methods implemented using cross industry standard process for data mining to predict central line-associated blood stream infections.
View Article and Find Full Text PDF