The importance of radiology in modern medicine is acknowledged for its non-invasive diagnostic capabilities, yet the manual formulation of unstructured medical reports poses time constraints and error risks. This study addresses the common limitation of Artificial Intelligence applications in medical image captioning, which typically focus on classification problems, lacking detailed information about the patient's condition. Despite advancements in AI-generated medical reports that incorporate descriptive details from X-ray images, which are essential for comprehensive reports, the challenge persists.
View Article and Find Full Text PDFThe present work shows a computational tool developed in the MATLAB platform. Its main functionality is to evaluate a thermal model of the breast. This computational infrastructure consists of modules in which manipulate the infrared images and calculate breast temperature profiles.
View Article and Find Full Text PDFThe sixth cranial nerve, also known as the abducens nerve, is responsible for controlling the movements of the lateral rectus muscle. Palsies on the sixth nerve prevent some muscles that control eye movements from proper functioning, causing headaches, migraines, blurred vision, vertigo, and double vision. Hence, such palsy should be diagnosed in the early stages to treat it without leaving any sequela.
View Article and Find Full Text PDFBackground: Liver segmentation is a fundamental step in the treatment planning and diagnosis of liver cancer. However, manual segmentation of liver is time-consuming because of the large slice quantity and subjectiveness associated with the specialist's experience, which can lead to segmentation errors. Thus, the segmentation process can be automated using computational methods for better time efficiency and accuracy.
View Article and Find Full Text PDFComput Methods Programs Biomed
September 2021
Background And Objectives: Pneumonia is a disease that affects the lungs, making breathing difficult. Nowadays, pneumonia is the disease that kills the most children under the age of five in the world, and if no action is taken, pneumonia is estimated to kill 11 million children by the year 2030. Knowing that rapid and accurate diagnosis of pneumonia is a significant factor in reducing mortality, acceleration, or automation of the diagnostic process is highly desirable.
View Article and Find Full Text PDFExpert Syst Appl
November 2021
The COVID-19 pandemic, which originated in December 2019 in the city of Wuhan, China, continues to have a devastating effect on the health and well-being of the global population. Currently, approximately 8.8 million people have already been infected and more than 465,740 people have died worldwide.
View Article and Find Full Text PDFStrabismus is an eye disease that affects about 0.12%-9.86% of the population, which can cause irreversible sensory damage to vision and psychological problems.
View Article and Find Full Text PDFDry eye syndrome is one of the most frequently reported eye diseases in ophthalmological practice. The diagnosis of this disease is a challenging task due to its multifactorial etiology. One of the most applied tests is the manual classification of tear film images captured with the Doane interferometer.
View Article and Find Full Text PDFBackground And Objective: One of the main steps in the planning of radiotherapy (RT) is the segmentation of organs at risk (OARs) in Computed Tomography (CT). The esophagus is one of the most difficult OARs to segment. The boundaries between the esophagus and other surrounding tissues are not well-defined, and it is presented in several slices of the CT.
View Article and Find Full Text PDFBackground: The precise segmentation of kidneys and kidney tumors can help medical specialists to diagnose diseases and improve treatment planning, which is highly required in clinical practice. Manual segmentation of the kidneys is extremely time-consuming and prone to variability between different specialists due to their heterogeneity. Because of this hard work, computational techniques, such as deep convolutional neural networks, have become popular in kidney segmentation tasks to assist in the early diagnosis of kidney tumors.
View Article and Find Full Text PDFBackground and Objective Dry eye syndrome disease negatively impacts many people in various ways. Several tests are required to diagnose it for evaluating different physiological characteristics. One of the most applied tests for this is the manual classification of tear film images captured with Doane interferometer.
View Article and Find Full Text PDFComput Methods Programs Biomed
August 2019
Background And Objective: Chest X-ray (CXR) is one of the most used imaging techniques for detection and diagnosis of pulmonary diseases. A critical component in any computer-aided system, for either detection or diagnosis in digital CXR, is the automatic segmentation of the lung field. One of the main challenges inherent to this task is to include in the segmentation the lung regions overlapped by dense abnormalities, also known as opacities, which can be caused by diseases such as tuberculosis and pneumonia.
View Article and Find Full Text PDFLung cancer is the type of cancer that most often kills after the initial diagnosis. To aid the specialist in its diagnosis, temporal evaluation is a potential tool for analyzing indeterminate lesions, which may be benign or malignant, during treatment. With this goal in mind, a methodology is herein proposed for the analysis, quantification, and visualization of changes in lung lesions.
View Article and Find Full Text PDFComput Methods Programs Biomed
March 2018
Lung cancer is pointed as the major cause of death among patients with cancer throughout the world. This work is intended to develop a methodology for diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The proposed methodology uses image processing and pattern recognition techniques.
View Article and Find Full Text PDFBackground And Objective: Lung cancer remains one of the most common cancers globally. Temporal evaluation is an important tool for analyzing the malignant behavior of lesions during treatment, or of indeterminate lesions that may be benign. This work proposes a methodology for the analysis, quantification, and visualization of small (local) and large (global) changes in lung lesions.
View Article and Find Full Text PDFUsing images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), we developed a methodology for classifying lung nodules. The proposed methodology uses image processing and pattern recognition techniques. To classify volumes of interest into nodules and non-nodules, we used shape measurements only, analyzing their shape using shape diagrams, proportion measurements, and a cylinder-based analysis.
View Article and Find Full Text PDFLung cancer is the major cause of death among patients with cancer worldwide. This work is intended to develop a methodology for the diagnosis of lung nodules using images from the Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI). The proposed methodology uses image processing and pattern recognition techniques.
View Article and Find Full Text PDFBreast cancer is the second most common type of cancer in the world. Several computer-aided detection and diagnosis systems have been used to assist health experts identify suspicious areas that are difficult to perceive with the human eye, thus aiding in the detection and diagnosis of cancer. This work proposes a methodology for the discrimination and classification of regions extracted from mammograms as mass and non-mass.
View Article and Find Full Text PDFBreast cancer is the second most common type of cancer in the world. Several computer-aided detection and diagnosis systems have been used to assist health experts and to indicate suspect areas that would be difficult to perceive by the human eye; this approach has aided in the detection and diagnosis of cancer. The present work proposes a method for the automatic detection of masses in digital mammograms by using quality threshold (QT), a correlogram function, and the support vector machine (SVM).
View Article and Find Full Text PDFObjective: The present work has the objective of developing an automatic methodology for the detection of lung nodules.
Methodology: The proposed methodology is based on image processing and pattern recognition techniques and can be summarized in three stages. In the first stage, the extraction and reconstruction of the pulmonary parenchyma is carried out and then enhanced to highlight its structures.
A mammogram is an examination of the breast intended to prevent and diagnose breast cancer. In this work we propose a methodology for detecting masses by determining certain asymmetric regions between pairs of mammograms of the left and the right breast. The asymmetric regions are detected by means of structural variations between corresponding regions, defined by a spatial descriptor called cross-variogram function.
View Article and Find Full Text PDFStrabismus is a pathology that affects about 4% of the population, causing aesthetic problems, reversible at any age; however, problems that can also cause irreversible muscular alterations, and alter the vision mechanism. The Hirschberg test is one of the exams used to detect this pathology. The application of high technology resources to help diagnose and treat ophthalmological conditions is, lamentably, not commonly found in the sub-specialty of strabismus.
View Article and Find Full Text PDF