Utilizing and improving the productivity of reclaimed land are highly significant for alleviating the problem of food production shortage in China, and the integrated rice-frog farming model can improve soil fertility. However, there are few studies on the use of integrated rice-frog farming technology to improve the fertility of reclaimed land and increase its efficiency in food production. Therefore, this study was conducted to evaluate the effects of the rice-frog co-cropping mode on the soil fertility and microbial diversity of reclaimed land.
View Article and Find Full Text PDFEnergy loss in perovskite grain boundaries (GBs) is a primary limitation toward high-efficiency perovskite solar cells (PSCs). Two critical strategies to address this issue are high-quality crystallization and passivation of GBs. However, the established methods are generally carried out discretely due to the complicated mechanisms of grain growth and defect formation.
View Article and Find Full Text PDFOptoelectronic synaptic transistors are attractive for applications in next-generation brain-like computation systems, especially for their visible-light operation and in-sensor computing capabilities. However, from a material perspective, it is difficult to build a device that meets expectations in terms of both its functions and power consumption, prompting the call for greater innovation in materials and device construction. In this study, we innovatively combined a novel perovskite carrier supply layer with an Al/MoO interface carrier regulatory layer to fabricate optoelectronic synaptic devices, namely Al/MoO/CsFAMA/ITO transistors.
View Article and Find Full Text PDFPerovskite single-crystal redissolution (PSCR) strategy is highly desired for efficient formamidinium lead triiodide (FAPbI ) perovskite photovoltaics with enhanced phase purity, improved film quality, low trap-state density, and good stability. However, the phase transition and crystallization dynamics of FAPbI remain unclear in the PSCR process compared to the conventional fabrication from the mixing of precursor materials. In this work, a green-solvent-assisted (GSA) method is employed to synthesize centimeter-sized α-FAPbI single crystals, which serve as the high-purity precursor to fabricate perovskite films.
View Article and Find Full Text PDFACS Appl Mater Interfaces
August 2023
Preferred crystalline orientation at the surface of quasi-2D organic-inorganic halide perovskites is crucial to promote vertical carrier transport and interface carrier extraction, which further contribute to device efficiency and stability in photovoltaic applications. However, loose unoriented and defective surfaces are inevitably formed in the crystallization process, especially with the introduction of bulky organic cations into the quasi-2D perovskites. Here, a facile and effective surface polishing method using a natural-friendly green solvent, 2,2,2-trifluoroethanol, is proposed to reconstruct the surface.
View Article and Find Full Text PDFRealization of remote wearable health monitoring (RWHM) technology for the flexible photodiodes is highly desirable in remote-sensing healthcare systems used in space stations, oceans, and forecasting warning, which demands high external quantum efficiency (EQE) and detectivity in NIR region. Traditional inorganic photodetectors (PDs) are mechanically rigid and expensive while the widely reported solution-processed mixed tin-lead (MSP) perovskite photodetectors (PPDs) exhibit a trade-off between EQE and detectivity in the NIR region. Herein, a novel functional passivating antioxidant (FPA) strategy has been introduced for the first time to simultaneously improve crystallization, restrain Sn oxidization, and reduce defects in MSP perovskite films by multiple interactions between thiophene-2-carbohydrazide (TAH) molecules and cations/anions in MSP perovskite.
View Article and Find Full Text PDFIt is essential to release annealing induced strain during the crystallization process to realize efficient and stable perovskite solar cells (PSCs), which does not seem achievable using the conventional annealing process. Here we report a novel and facile thermal gradient assisted crystallization strategy by simply introducing a slant angle between the preheated hot plate and the substrate. A distinct crystallization sequence resulted along the in-plane direction pointing from the hot side to the cool side, which effectively reduced the crystallization rate, controlled the perovskite grain growth, and released the in-plane tensile strain.
View Article and Find Full Text PDFMultiple objectives optimization of frequency selective surface (FSS) structures is challenging in electromagnetic wave filter design. For example, one of the sub-objectives, the sidelobe level (SLL), is critical to directional anti-interference, which is complicated and becomes the bottleneck for radar design. Here, we established a dynamic algorithm for fitness function to automatically adjust the weights of multiple objectives in the optimization process of FSS structures.
View Article and Find Full Text PDFThe photovoltaic performance of perovskite solar cell is determined by multiple interrelated factors, such as perovskite compositions, electronic properties of each transport layer and fabrication parameters, which makes it rather challenging for optimization of device performances and discovery of underlying mechanisms. Here, we propose and realize a novel machine learning approach based on forward-reverse framework to establish the relationship between key parameters and photovoltaic performance in high-profile MASnPbI perovskite materials. The proposed method establishes the asymmetrically bowing relationship between band gap and Sn composition, which is precisely verified by our experiments.
View Article and Find Full Text PDFOrganic-inorganic hybrid semiconducting (OIHS) materials, which can detect broader spectral regions, are highly desired in several applications including biomedical imaging, night vision, and optical communications. Although lead (Pb)-halide perovskites have reached a mature research stage, high toxicity of Pb hinders their large-scale viability. Tin (Sn)-based perovskites are the most common OIHS broadband light absorbers that replace toxic Pb; however, they are extremely unstable due to the notorious Sn oxidation.
View Article and Find Full Text PDFExploring lead-free candidates and improving efficiency and stability remain the obstacle of hybrid organic-inorganic perovskite-based devices commercialization. Traditional trial-and-error methods seriously restrict the discovery especially for large search space, complex crystal structure and multi-objective properties. Here, the authors propose a multi-step and multi-stage screening scheme to accelerate the discovery of hybrid organic-inorganic perovskites A BB'X from a large number of candidates through combining machine learning with high-throughput calculations for pursuing excellent efficiency and thermal stability in solar cells.
View Article and Find Full Text PDFCurr Pharm Des
November 2020
Accumulating evidences have demonstrated that the existence of breast cancer-initiating cells, which drives the original tumorigenicity, local invasion and migration propensity of breast cancer. These cells, termed as breast cancer stem cells (BCSCs), possess properties including self-renewal, multidirectional differentiation and proliferative potential, and are believed to play important roles in the intrinsic drug resistance of breast cancer. One of the reasons why BCBCs cause difficulties in breast cancer treating is that BCBCs can control both genetic and non-genetic elements to keep their niches safe and sound, which allows BCSCs for constant self-renewal and differentiation.
View Article and Find Full Text PDFIt is of great practical significance to accurately obtain formation collapse pressure and determine an effective three-pressure profile with a correct strength criterion in the drilling process to identify the best drilling fluid density. Taking the tight sandstone of the XuJiahe formation as an example, we conducted a series of rock mechanics tests, focusing on large-scale, high-density confining pressure triaxial experiments; determined a mathematical expression for the continuous tangent envelope of a nonlinear Mohr circle envelope based on a series of triaxial tests; and clarified the variation rules of cohesion force and internal friction angle with confining pressure. The impact of rock mechanics parameters determined by using the traditional method and the continuous tangent envelope method on wellbore stability is compared and analyzed by using the MathCAD program, and then the collapse pressure is obtained.
View Article and Find Full Text PDF