Mullite fiber felt is a promising material that may fulfill the demands of advanced flexible external thermal insulation blankets. However, research on the fabrication and performance of mullite fiber felt with high-temperature resistance and thermal stability is still lacking. In this work, mullite fibers were selected as raw materials for the fabrication of mullite fibrous porous materials with a three-dimensional net structure.
View Article and Find Full Text PDFFibers crystallize and become brittle at high temperatures for a long time, so the surface coating must maintain long-lasting emission performance, which requires superior antioxidant properties of the high-emissivity fillers. To improve the radiation performance of the coating and the tensile strength of the fiber fabric, a double-layer coating with high emissivity was prepared on the surface of flexible aluminum silicate fiber fabric (ASFF) using MoSi and SiC as emissive agents. The incorporation of borosilicate glass into the outer coating during high-temperature oxidation of ZrB results in superior encapsulation of emitter particles, effectively filling the pores of the coating and significantly reducing the oxidation rate of MoSi and SiC.
View Article and Find Full Text PDFThe Applications of silica aerogel are limited due to its brittleness and low strength. As a result, it is essential to strengthen and toughen it. Organic nanofibers are one of the preferred reinforcement materials.
View Article and Find Full Text PDFMaterials (Basel)
January 2024
Ceramic fiber thread is one of the key components in flexible external thermal insulation blankets, and it has been applied in various fields as a flexible ceramic fibrous material with excellent deformability and high-temperature resistance. However, ceramic fiber threads are often subjected to reciprocating friction motion at specific bending angles, making them highly susceptible to abrade and fracture. Enhancing the abrasion resistance performance of ceramic fiber threads under bending conditions is the future trend and remains a significant challenge.
View Article and Find Full Text PDFHigh-entropy ceramics exhibit various excellent properties owing to their high configurational entropy, which is caused by multi-principal elements sharing one lattice site. The configurational entropy will further increase significantly if multi-principal elements randomly share two different lattice sites. For this purpose, pseudobrookite phase containing two cationic lattice sites (A and B sites) is selected, and corresponding high-entropy pseudobrookite (M M )TiO is synthesized.
View Article and Find Full Text PDFThe paradoxical effects of cobalt in biological processes have caused controversy regarding the application of cobalt-based biomaterials. Cobalt has recently been shown to be a trace element that promotes bone growth. Qingzhuan Dark Tea polysaccharides (TPS) has been shown to be a biomaterial with antioxidant and immunomodulatory effects.
View Article and Find Full Text PDFACS Appl Mater Interfaces
March 2023
Porous fiber-based ceramics have been widely applied in various fields because of their excellent thermal insulation property and high thermal stability property. However, designing porous fibrous ceramics with enhanced comprehensive performances, such as low density, low thermal conductivity, and high mechanical properties at both room temperature and high temperature, is still a challenge and the future development trend. Hence, based on the lightweight cuttlefish bone that possesses a "wall-septa" structure with excellent mechanical performance, we design and fabricate a novel porous fibrous ceramic with the unique fiber-based dual structure of lamellas by the directional freeze-casting method and systematically investigate the effects of lamellar components on the microstructure and mechanical performances of the product.
View Article and Find Full Text PDFSeveral vascular embolization materials are commonly used in clinical practice, however, having application defects of varying degrees, such as poor intraoperative imaging and easy recanalization of embolized blood vessels, they are challenging for application during Transcatheter arterial embolization (TAE). Thus, an intraoperative visible vascular embolization material with good embolization effect and biocompatibility can improve transcatheter arterial embolization clinical efficacy to some extent. Our study aimed to synthesize a novel vascular embolization material that can achieve complete embolization of arterial trunks and peripheral vessels, namely poly (N-isopropyl acrylamide)--acrylic acid nanogel (NIPAM--AA).
View Article and Find Full Text PDFIodized oil has an excellent X-ray imaging effect, but it shows poor embolization performance. When used as an embolic agent, it is easily washed off by the blood flow and eliminated from the body. Therefore, it is essential to use iodized oil in combination with solid embolic agents such as gelatin sponge or to perform multiple embolization procedures to achieve the therapeutic effect.
View Article and Find Full Text PDFFibrous porous materials are one of the most commonly used high-temperature insulation materials because of their high porosity and low thermal conductivity. Due to their wide applications in the aerospace and energy industries, the investigation of high-elastic thermally insulating porous materials has attracted increasing attention. In order to improve the elasticity of fibrous porous materials, quartz fibers with high aspect ratio were used as matrix, sodium hexametaphosphate (SHMP) was selected as dispersant.
View Article and Find Full Text PDFWe use metal-assisted chemical etching (MCE) method to fabricate nanostructured black silicon on the surface of C-Si. The Si-PIN photoelectronic detector based on this type of black silicon shows excellent device performance with a responsivity of 0.57 A/W at 1060 nm.
View Article and Find Full Text PDFThe aim of the present study was to investigate whether magnolol, the essential component of the traditional Chinese medicine, , can pass through liver X receptor α (LXRα), to subsequently play an important role in the lipid metabolic balance. Using a HepG2 human hepatoma cell line, mammalian cellular one-hybridization and mammalian cell transcriptional activation experiments were performed to detect the combination degree of magnolol at different concentrations with LXRα, and assess the transcriptional activity. In addition, using a THP-1 human monocytic cell line, quantitative polymerase chain reaction was performed to assess the effect on the expression levels of downstream genes.
View Article and Find Full Text PDF