Publications by authors named "Anping Han"

Objective: To explore the advantage of reconstruction belt for treating complicated acetabular fracture by combined anterior and posterior approaches through the comparison with reconstruction plate.

Methods: A retrospective analysis was made on the clinical data of 39 patients with acetabular fractures who met the selection criteria. After open reduction by combined anterior and posterior approaches was performed, fracture was fixed by reconstruction belt in 20 cases (trial group), and by reconstruction plate in 19 cases (control group).

View Article and Find Full Text PDF

Microcephaly affects approximately 1% of the population and is associated with mental retardation, motor defects and, in some cases, seizures. We analyzed the mechanisms underlying brain size determination in a mouse model of human microcephaly. The Hertwig's anemia (an) mutant shows peripheral blood cytopenias, spontaneous aneuploidy and a predisposition to hematopoietic tumors.

View Article and Find Full Text PDF

Haem-regulated eIF2alpha kinase (HRI) is essential for the regulation of globin gene translation and the survival of erythroid precursors in iron/haem deficiency. This study found that that in iron deficiency, fetal definitive erythropoiesis is inhibited at the basophilic erythroblast stage with increased proliferation and elevated apoptosis. This hallmark of ineffective erythropoiesis is more severe in HRI deficiency.

View Article and Find Full Text PDF

Heme-regulated eIF2alpha kinase (HRI) is essential for regulating globin translation in iron deficiency and in beta-thalassemia. We investigated the role of heme-regulated eIF2alpha kinase in hemoglobin and red blood cell production as well as in iron homeostasis in a mouse model of iron overload. We show that HRI deficiency does not significantly affect red cell parameters of hemochromatosis (HFE(-)(/)(-)) mice.

View Article and Find Full Text PDF

Heme-regulated eIF2alpha kinase (HRI) plays an essential protective role in anemias of iron deficiency, erythroid protoporphyria, and beta-thalassemia. In this study, we report that HRI protein is present in murine macrophages, albeit at a lower level than in erythroid precursors. Hri-/- mice exhibited impaired macrophage maturation and a weaker antiinflammatory response with reduced cytokine production upon LPS challenge.

View Article and Find Full Text PDF

Proteins with iron-sulfur (Fe-S) clusters participate in multiple metabolic pathways throughout the cell. The mitochondrial ABC half-transporter Abcb7, which is mutated in X-linked sideroblastic anemia with ataxia in humans, is a functional ortholog of yeast Atm1p and is predicted to export a mitochondrially derived metabolite required for cytosolic Fe-S cluster assembly. Using an inducible Cre/loxP system to delete exons 9 and 10 of the Abcb7 gene, we examined the phenotype of mice deficient in Abcb7.

View Article and Find Full Text PDF

Heme-regulated eIF2alpha kinase (HRI) controls protein synthesis by phosphorylating the alpha-subunit of eukaryotic translational initiation factor 2 (eIF2alpha). In heme deficiency, HRI is essential for translational regulation of alpha- and beta-globins and for the survival of erythroid progenitors. HRI is also activated by a number of cytoplasmic stresses other than heme deficiency, including oxidative stress and heat shock.

View Article and Find Full Text PDF

Exposure to arsenite inhibits protein synthesis and activates multiple stress signaling pathways. Although arsenite has diverse effects on cell metabolism, we demonstrated that phosphorylation of eukaryotic translation initiation factor 2 at Ser-51 on the alpha subunit was necessary to inhibit protein synthesis initiation in arsenite-treated cells and was essential for stress granule formation. Of the four protein kinases known to phosphorylate eukaryotic translation initiation factor 2alpha, only the heme-regulated inhibitor kinase (HRI) was required for the translational inhibition in response to arsenite treatment in mouse embryonic fibroblasts.

View Article and Find Full Text PDF

In heme deficiency, protein synthesis is inhibited by the activation of the heme-regulated eIF2alpha kinase (HRI) through its multiple autophosphorylation. Autophosphorylation sites in HRI were identified in order to investigate their functions. We found that there were eight major tryptic phosphopeptides of HRI activated in heme deficiency.

View Article and Find Full Text PDF