Predicting metal concentrations in surface waters is an important step in the understanding and ultimately the assessment of the ecological risk associated with metal contamination. In terms of risk an essential piece of information is the accurate knowledge of the partitioning of the metals between the dissolved and particulate phases, as the former species are generally regarded as the most bioavailable and thus harmful form. As a first step towards the understanding and prediction of metal speciation in the Scheldt Estuary (Belgium, the Netherlands), we carried out a detailed analysis of a historical dataset covering the period 1982-2011.
View Article and Find Full Text PDFIn order to simulate the long-term (months-years) median Escherichia coli distributions and variations in the tidal Scheldt River and Estuary, a dedicated module was developed for the Second-generation Louvain-la-Neuve Ice-ocean Model (SLIM, www.climate.be/slim).
View Article and Find Full Text PDFRecent observations in the tidal Scheldt River and Estuary revealed a poor microbiological water quality and substantial variability of this quality which can hardly be assigned to a single factor. To assess the importance of tides, river discharge, point sources, upstream concentrations, mortality and settling a new model (SLIM-EC) was built. This model was first validated by comparison with the available field measurements of Escherichia coli (E.
View Article and Find Full Text PDFThe reaction rate of the copper-catalyzed oxidation of iodide by oxygen in an aqueous acidic medium is first order in copper and oxygen concentrations, Michaelis-Menten in pH and a complex, asymmetrical bell shaped function in iodide concentrations. A theoretical, multivariate reaction rate equation was proposed which enabled to optimise the various kinetic coefficients. During the parameter optimisation, the experiments were weighted taking into account all measurement uncertainties, i.
View Article and Find Full Text PDF