Preparing radiology examinations for interpretation requires prefetching relevant prior examinations and implementing hanging protocols to optimally display the examination along with comparisons. Body part is a critical piece of information to facilitate both prefetching and hanging protocols, but body part information encoded using the Digital Imaging and Communications in Medicine (DICOM) standard is widely variable, error-prone, not granular enough, or missing altogether. This results in inappropriate examinations being prefetched or relevant examinations left behind; hanging protocol optimization suffers as well.
View Article and Find Full Text PDFCorrect catheter position is crucial to ensuring appropriate function of the catheter and avoid complications. This paper describes a dataset consisting of 50,612 image level and 17,999 manually labelled annotations from 30,083 chest radiographs from the publicly available NIH ChestXRay14 dataset with manually annotated and segmented endotracheal tubes (ETT), nasoenteric tubes (NET) and central venous catheters (CVCs).
View Article and Find Full Text PDFThis dataset is composed of annotations of the five hemorrhage subtypes (subarachnoid, intraventricular, subdural, epidural, and intraparenchymal hemorrhage) typically encountered at brain CT.
View Article and Find Full Text PDFThe coronavirus disease 2019 (COVID-19) pandemic is a global health care emergency. Although reverse-transcription polymerase chain reaction testing is the reference standard method to identify patients with COVID-19 infection, chest radiography and CT play a vital role in the detection and management of these patients. Prediction models for COVID-19 imaging are rapidly being developed to support medical decision making.
View Article and Find Full Text PDFPneumothorax is a potentially life-threatening condition that requires prompt recognition and often urgent intervention. In the ICU setting, large numbers of chest radiographs are performed and must be interpreted on a daily basis which may delay diagnosis of this entity. Development of artificial intelligence (AI) techniques to detect pneumothorax could help expedite detection as well as localize and potentially quantify pneumothorax.
View Article and Find Full Text PDFThis dataset is intended to be used for machine learning and is composed of annotations with bounding boxes for pulmonary opacity on chest radiographs which may represent pneumonia in the appropriate clinical setting.
View Article and Find Full Text PDF