Publications by authors named "Anouk S Lubbe"

Lignin is the largest natural source of functionalized aromatics on the planet, therefore exploiting its inherent structural features for the synthesis of aromatic products is a timely and ambitious goal. While the recently developed lignin depolymerization strategies gave rise to well-defined aromatic platform chemicals, the diversification of these structures, especially toward high-end applications is still poorly addressed. Molecular motors and switches have found widespread application in many important areas such as targeted drug delivery systems, responsive coatings for self-healing surfaces, paints and resins or muscles for soft robotics.

View Article and Find Full Text PDF

The ability to induce and amplify motion at the molecular scale has seen tremendous progress ranging from simple molecular rotors to responsive materials. In the two decades since the discovery of light-driven rotary molecular motors, the development of these molecules has been extensive; moving from the realm of molecular chemistry to integration into dynamic molecular systems. They have been identified as actuators holding great potential to precisely control the dynamics of nanoscale devices, but integrating molecular motors effectively into evermore complex artificial molecular machinery is not trivial.

View Article and Find Full Text PDF

Molecular motors are Nature's solution for (supra)molecular transport and muscle functioning and are involved in most forms of directional motion at the cellular level. Their synthetic counterparts have also found a myriad of applications, ranging from molecular machines and smart materials to catalysis and anion transport. Although light-driven rotary molecular motors are likely to be suitable for use in an artificial cell, as well as in bionanotechnology, thus far they are not readily applied under physiological conditions.

View Article and Find Full Text PDF

Reversible control over the functionality of biological systems via external triggers may be used in future medicine to reduce the need for invasive procedures. Additionally, externally regulated biomacromolecules are now considered as particularly attractive tools in nanoscience and the design of smart materials, due to their highly programmable nature and complex functionality. Incorporation of photoswitches into biomolecules, such as peptides, antibiotics, and nucleic acids, has generated exciting results in the past few years.

View Article and Find Full Text PDF

Motor proteins are nature's solution for directing movement at the molecular level. The field of artificial molecular motors takes inspiration from these tiny but powerful machines. Although directional motion on the nanoscale performed by synthetic molecular machines is a relatively new development, significant advances have been made.

View Article and Find Full Text PDF

There is a growing interest in the photoregulation of biological functions, due to the high level of spatiotemporal precision achievable with light. Additionally, light is non-invasive and waste-free. In particular, the photoregulation of oligonucleotide structure and function is a rapidly developing study field with relevance to biological, physical and material sciences.

View Article and Find Full Text PDF

As molecular machines move to exciting applications in various environments, the study of medium effects becomes increasingly relevant. It is difficult to predict how, for example, the large apolar structure of a light-driven rotary molecular motor is affected by a biological setting or surface proximity, while for future nanotechnology precise fine tuning and full understanding of the isomerization process are of the utmost importance. Previous investigations into solvent effects have mainly focused on the relatively large solvent-solute interaction of hydrogen bonding or polarization induced by the isomerization process.

View Article and Find Full Text PDF

Transition-state theory allows for the characterization of kinetic processes in terms of enthalpy and entropy of activation by using the Eyring equation. However, for reactions in solution, it fails to take the change of viscosity of solvents with temperature into account. A second-generation unidirectional rotary molecular motor was used as a probe to study the effects of temperature-dependent viscosity changes upon unimolecular thermal isomerization processes.

View Article and Find Full Text PDF

A general enantioselective route to functionalized first generation molecular motors is described. An enantioselective protonation of the silyl enol ethers of indanones by a Au(I)BINAP complex sets the stage for a highly diastereoselective McMurry coupling as a second enhancement step for enantiomeric excess. In this way various functionalized overcrowded alkenes could be synthesized in good yields (up to 78%) and good to excellent enantiomeric excess (85% ee->98% ee) values.

View Article and Find Full Text PDF

A study is presented on the control of rotary motion of an appending rotor unit in a light-driven molecular motor. Two new light driven molecular motors were synthesized that contain aryl groups connected to the stereogenic centers. The aryl groups behave as bidirectional free rotors in three of the four isomers of the 360° rotation cycle, but rotation of the rotors is hindered in the fourth isomer.

View Article and Find Full Text PDF