Publications by authors named "Anouk Lie-Piang"

Food ingredients with a low degree of refining consist of multiple components. Therefore, it is essential to formulate food products based on techno-functional properties rather than composition. We assessed the potential of quantifying techno-functional properties of ingredient blends from multiple crops as opposed to single crops.

View Article and Find Full Text PDF

Techno-functional properties of multi-component blends and ingredients are determined by the contribution of each ingredient and the water distribution between those ingredients in the blends. However, ingredients can consist of multiple components, which should be considered to better understand the properties of ingredients and blends thereof. Recently, empirical models were used to describe the viscosity of mildly refined ingredient blends.

View Article and Find Full Text PDF

Currently, food industries typically favour formulation of food products using highly refined techno-functional ingredients of high purity. However, there is a growing interest in less pure techno-functional ingredients with a lower degree of refining as they deliver the same functional properties with reduced environmental impact. We propose that instead of selecting formulations based on purity, they should be selected based on their techno-functional properties.

View Article and Find Full Text PDF

The dynamics of β-casein and casein micelles in the reconstitution of skim milk were revisited in this study. β-casein migrates into casein micelles upon an increase in temperatures due to an increase in the hydrophobic effect and lower calcium-phosphate cluster solubility. This process can be reversed upon cooling.

View Article and Find Full Text PDF

Milk powders are commonly used for a variety of food products in which among others the milk proteins add to the properties of the products. Processing of milk can, depending on the processing parameters, change the size and structure of the proteins. These changes can be difficult to measure due to the polydispersity of milk components, which makes it a challenge to obtain direct information about the individual proteins.

View Article and Find Full Text PDF