Neutrophils can efficiently trigger cytotoxicity toward tumor cells and other target cells upon engagement of the IgA receptor CD89. However, the cell-intrinsic factors that influence the induction of cell death upon exposure to neutrophil effector mechanisms in vivo remain largely unknown. To uncover genetic regulators that influence target cell sensitivity to IgA-induced neutrophil-mediated killing, we used a human CD89 (hCD89) transgenic mouse model in which IgA-mediated killing of Her2-positive CD47-deficient murine target cells is mediated by neutrophils.
View Article and Find Full Text PDFPotent T cell responses against infections and malignancies require a rapid yet tightly regulated production of toxic effector molecules. Their production level is defined by post-transcriptional events at 3' untranslated regions (3' UTRs). RNA binding proteins (RBPs) are key regulators in this process.
View Article and Find Full Text PDFT cells are central players of the adaptive immune system by protecting us from recurring infections and by killing malignant cells. Protective T cell responses rely on the concerted production of effector molecules such as cytolytic mediators, granzymes, and perforins, as well as pro-inflammatory cytokines and chemokines. Once activated, T cells drastically change their gene expression and rapidly respond to insults by producing ample amounts of effector molecules.
View Article and Find Full Text PDF