Publications by authors named "Anoud Ailabouni"

The SLC22A2 gene encodes organic cation transporter 2 (OCT2), which is predominantly expressed in renal proximal tubule cells. OCT2 is critical for the active renal excretion of various cationic drugs and endogenous metabolites. OCT2 expression varies across species, with higher levels in mice and monkeys compared with humans and rats.

View Article and Find Full Text PDF

The impact of potential precipitant drugs on plasma or urinary exposure of endogenous biomarkers is emerging as an alternative approach to evaluating drug-drug interaction (DDI) liability. 1-Methylnicotinamide (NMN) has been proposed as a potential biomarker for renal organic cation transporter 2 (OCT2). NMN is synthesized in the liver from nicotinamide by nicotinamide N-methyltransferase (NNMT) and is subsequently metabolized by aldehyde oxidase (AO).

View Article and Find Full Text PDF

The widely prescribed oral anti-diabetic drug metformin is eliminated unchanged in the urine primarily through active tubular secretion. This process is mediated by organic cation transporter 2 (OCT2), an uptake transporter expressed on the basolateral membrane of renal proximal tubule cells. Metformin uptake into the liver, the site of action, is mediated by OCT1, which is expressed on the sinusoidal membrane of hepatocytes.

View Article and Find Full Text PDF

Tubular secretion is a primary mechanism along with glomerular filtration for renal elimination of drugs and toxicants into urine. Organic cation transporters (OCTs) and multidrug and toxic extrusion (MATE) transporters facilitate the active secretion of cationic substrates, including drugs such as metformin and endogenous cations. We hypothesized that administration of cimetidine, an Oct/Mate inhibitor, will result in increased plasma levels and decreased renal clearance of metformin and endogenous Oct/Mate substrates in rats.

View Article and Find Full Text PDF