Publications by authors named "Anouchka Skoudy"

Pluripotent embryonic stem cells (ESC) are a promising cellular system for generating an unlimited source of tissue for the treatment of chronic diseases and valuable in vitro differentiation models for drug testing. Our aim was to direct differentiation of mouse ESC into pancreatic acinar cells, which play key roles in pancreatitis and pancreatic cancer. To that end, ESC were first differentiated as embryoid bodies and sequentially incubated with activin A, inhibitors of Sonic hedgehog (Shh) and bone morphogenetic protein (BMP) pathways, fibroblast growth factors (FGF) and retinoic acid (RA) in order to achieve a stepwise increase in the expression of mRNA transcripts encoding for endodermal and pancreatic progenitor markers.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates how specific genes and transcriptional regulators are involved in the regeneration of the pancreas after injury due to pancreatitis.
  • Using wild-type and genetically modified mice, researchers examined the expression patterns of pancreatic genes and their proteins after inducing pancreatitis, revealing complex recovery processes in acinar and endocrine cells.
  • Key findings include a temporary decline in certain gene expressions (like Hnf1α and Pdx1) during injury and their gradual recovery, suggesting that Hnf1α regulates gene expression through its interaction with the Nr5a2 promoter rather than functioning directly on digestive enzyme genes.
View Article and Find Full Text PDF

Introduction: Deregulated expression/activation of transcription factors is a key event in the establishment and progression of human cancer. Furthermore, most oncogenic signaling pathways converge on sets of transcription factors that ultimately control gene expression patterns resulting in cancer development, progression, and metastasis.

Methods: Ductal pancreatic adenocarcinoma (PDA) is the main type of pancreatic cancer and the fourth leading cause of cancer mortality in the Western world.

View Article and Find Full Text PDF

The epigenome changes that underlie cellular differentiation in developing organisms are poorly understood. To gain insights into how pancreatic beta-cells are programmed, we profiled key histone methylations and transcripts in embryonic stem cells, multipotent progenitors of the nascent embryonic pancreas, purified beta-cells, and 10 differentiated tissues. We report that despite their endodermal origin, beta-cells show a transcriptional and active chromatin signature that is most similar to ectoderm-derived neural tissues.

View Article and Find Full Text PDF

Chronic pancreatitis and pancreatic ductal adenocarcinoma (PDAC) are associated with major changes in cell differentiation. These changes may be at the basis of the increased risk for PDAC among patients with chronic pancreatitis. Polycomb proteins are epigenetic silencers expressed in adult stem cells; up-regulation of Polycomb proteins has been reported to occur in a variety of solid tumours such as colon and breast cancer.

View Article and Find Full Text PDF

Embryonic stem (ES) cells which constitutively express the Pdx-1, Ngn-3, NeuroD1, Nkx2.2, and Nkx6.1 transcription factors were engineered by means of lentiviral vectors, following a multi-step infection procedure to successively generate ES cell lines expressing one, two, and three factors, respectively.

View Article and Find Full Text PDF

Background & Aims: Acinar cells constitute 90% of the pancreas epithelium, are polarized, and secrete digestive enzymes. These cells play a crucial role in pancreatitis and pancreatic cancer. However, there are limited models to study normal acinar cell differentiation in vitro.

View Article and Find Full Text PDF

Pancreatic cancer has a very poor prognosis, in part due to its diagnosis at late stages of the disease and to limited response to chemotherapy and radiotherapy. The vast majority of pancreatic cancers are classified as pancreatic ductal adenocarcinomas (PDACs). Despite advances in knowledge on the cellular origin of PDAC or the involvement of signal transduction pathways therein, many questions remain unanswered.

View Article and Find Full Text PDF

Embryonic stem cells (ES) can spontaneously activate a pancreatic differentiation program in vitro, although with low efficiency. The aim was to improve such process by using viral mediated gene transduction. In this study, we have examined the suitability of using viral vectors to express key transcriptional factors involved in pancreatic development.

View Article and Find Full Text PDF

Background & Aims: The basic helix-loop-helix transcription factor pancreas-specific transcription factor 1alpha (PTF1alpha)/p48 is critical for committing cells to a pancreatic fate and for the maintenance of the differentiated state in acinar cells. The aim was to analyze the ability of p48 to modulate cell proliferation, its relationship with cell differentiation, and the mechanisms involved therein.

Methods: Pancreatic and nonpancreatic cells were transfected with p48 cDNA, and the effects on cell proliferation were examined.

View Article and Find Full Text PDF

E2F transcription factors are thought to be key regulators of cell growth control. Here we use mutant mouse strains to investigate the function of E2F1 and E2F2 in vivo. E2F1/E2F2 compound-mutant mice develop nonautoimmune insulin-deficient diabetes and exocrine pancreatic dysfunction characterized by endocrine and exocrine cell dysplasia, a reduction in the number and size of acini and islets, and their replacement by ductal structures and adipose tissue.

View Article and Find Full Text PDF

Extracellular signalling cues play a major role in the activation of differentiation programmes. Mouse embryonic stem (ES) cells are pluripotent and can differentiate into a wide variety of specialized cells. Recently, protocols designed to induce endocrine pancreatic differentiation in vitro have been designed but little information is currently available concerning the potential of ES cells to differentiate into acinar pancreatic cells.

View Article and Find Full Text PDF