Publications by authors named "Anouar El Ghouch"

The receiver-operating characteristic (ROC) curve is the most popular graphical method for evaluating the classification accuracy of a diagnostic marker. In time-to-event studies, the subject's event status is time-dependent, and hence, time-dependent extensions of ROC curve have been proposed. However, in practice, the calculation of this curve is not straightforward due to the presence of censoring that may be of different types.

View Article and Find Full Text PDF

The prediction reliability is of primary concern in many clinical studies when the objective is to develop new predictive models or improve existing risk scores. In fact, before using a model in any clinical decision making, it is very important to check its ability to discriminate between subjects who are at risk of, for example, developing certain disease in a near future from those who will not. To that end, the time-dependent receiver operating characteristic (ROC) curve is the most commonly used method in practice.

View Article and Find Full Text PDF

During the last decades, several approaches have been proposed to estimate the time-dependent area under the receiver operating characteristic curve (AUC) of risk tools derived from survival data. The validity of these estimators relies on some regularity assumptions among which a survival function being proper. In practice, this assumption is not always satisfied because a fraction of the population may not be susceptible to experience the event of interest even for long follow-up.

View Article and Find Full Text PDF

Composite endpoints are frequently used in clinical outcome trials to provide more endpoints, thereby increasing statistical power. A key requirement for a composite endpoint to be meaningful is the absence of the so-called qualitative heterogeneity to ensure a valid overall interpretation of any treatment effect identified. Qualitative heterogeneity occurs when individual components of a composite endpoint exhibit differences in the direction of a treatment effect.

View Article and Find Full Text PDF

Models for interval-censored survival data presenting a fraction of "cure" or "immune" patients have recently been proposed in the literature, particularly extending the mixture cure model to interval-censored data. However, little is known about the goodness-of-fit of such models. In a mixture cure model, the survival distribution of the entire population is improper and expressed in terms of the survival distribution of uncured individuals, i.

View Article and Find Full Text PDF

In standard survival analysis, it is generally assumed that every individual will experience someday the event of interest. However, this is not always the case, as some individuals may not be susceptible to this event. Also, in medical studies, it is frequent that patients come to scheduled interviews and that the time to the event is only known to occur between two visits.

View Article and Find Full Text PDF