Publications by authors named "Anosh Daruwalla"

This paper presents a novel high-Q silicon distributed Lamé mode resonator (DLR) for VHF timing reference applications. The DLR employs the nature of shear wave propagation to enable a cascade of small square Lamé modes in beam or frame configurations with increased transduction area. Combined with high efficiency nano-gap capacitive transduction, it enables low motional impedances while scaling the frequency to VHF range.

View Article and Find Full Text PDF

Micromechanical resonators with ultra-low energy dissipation are essential for a wide range of applications, such as navigation in GPS-denied environments. Routinely implemented in silicon (Si), their energy dissipation often reaches the quantum limits of Si, which can be surpassed by using materials with lower intrinsic loss. This paper explores dissipation limits in 4H monocrystalline silicon carbide-on-insulator (4H-SiCOI) mechanical resonators fabricated at wafer-level, and reports on ultra-high quality-factors (Q) in gyroscopic-mode disk resonators.

View Article and Find Full Text PDF

Micro- and increasingly, nano-fabrication have enabled the miniaturization of atomic devices, from vapor cells to atom chips for Bose-Einstein condensation. Here we present microfabricated planar devices for thermal atomic beams. Etched microchannels were used to create highly collimated, continuous rubidium atom beams traveling parallel to a silicon wafer surface.

View Article and Find Full Text PDF

This paper presents the design, fabrication, and characterization of a novel high quality factor () resonant pitch/roll gyroscope implemented in a 40 μm (100) silicon-on-insulator (SOI) substrate without using the deep reactive-ion etching (DRIE) process. The featured silicon gyroscope has a mode-matched operating frequency of 200 kHz and is the first out-of-plane pitch/roll gyroscope with electrostatic quadrature tuning capability to fully compensate for fabrication non-idealities and variation in SOI thickness. The quadrature tuning is enabled by slanted electrodes with sub-micron capacitive gaps along the (111) plane created by an anisotropic wet etching.

View Article and Find Full Text PDF

A dual-axis single-proof-mass angular accelerometer has been developed for a vestibular prosthesis. Designed to sense head rotations both in the yaw and the pitch planes, the output of the inertial sensor may be coded as amplitude or rate modulated biphasic current pulses to stimulate vestibular nerves. Fabricated with a high aspect ratio commercial process, a sensor with small form factor (1.

View Article and Find Full Text PDF