Publications by authors named "Anoop Rawat"

Adult hippocampal neurogenesis is a lifelong process that involves the integration of newborn neurons into the hippocampal network, and plays a role in cognitive function and the modulation of mood-related behavior. Here, we sought to address the impact of chemogenetic activation of adult hippocampal progenitors on distinct stages of progenitor development, including quiescent stem cell activation, progenitor turnover, differentiation and morphological maturation. We find that hM3Dq-DREADD-mediated activation of nestin-positive adult hippocampal progenitors recruits quiescent stem cells, enhances progenitor proliferation, increases doublecortin-positive newborn neuron number, accompanied by an acceleration of differentiation and morphological maturation, associated with increased dendritic complexity.

View Article and Find Full Text PDF

Huntington's disease (HD) is a genetically inherited neurodegenerative disorder caused by expansion of a polyglutamine (polyQ) repeat in the exon-1 of huntingtin protein (HTT). The expanded polyQ enhances the amyloidogenic propensity of HTT exon 1 (HTTex1), which forms a heterogeneous mixture of assemblies with a broad neurotoxicity spectrum. While predominantly intracellular, monomeric and aggregated mutant HTT species are also present in the cerebrospinal fluids of HD patients, however, their biological properties are not well understood.

View Article and Find Full Text PDF

The first exon of the huntingtin protein (HTTex1) important in Huntington's disease (HD) can form cross-β fibrils of varying toxicity. We find that the difference between these fibrils is the degree of entanglement and dynamics of the C-terminal proline-rich domain (PRD) in a mechanism analogous to polyproline film formation. In contrast to fibril strains found for other cross-β fibrils, these HTTex1 fibril types can be interconverted.

View Article and Find Full Text PDF

The functional amyloid Orb2 belongs to the cytoplasmic polyadenylation element binding (CPEB) protein family and plays an important role in long-term memory formation in Drosophila. The Orb2 domain structure combines RNA recognition motifs with low-complexity sequences similar to many RNA-binding proteins shown to form protein droplets via liquid-liquid phase separation (LLPS) in vivo and in vitro. This similarity suggests that Orb2 might also undergo LLPS.

View Article and Find Full Text PDF

Structure-based "rational" drug design strategies fail for diseases associated with intrinsically disordered proteins (IDPs). However, structural disorder allows large-amplitude spontaneous intramolecular dynamics in a protein. We demonstrate a method that exploits this dynamics to provide quantitative information about the degree of interaction of an IDP with other molecules.

View Article and Find Full Text PDF

Abnormal protein aggregation is a hallmark of various human diseases. α-Synuclein, a protein implicated in Parkinson's disease, is found in aggregated form within Lewy bodies that are characteristically observed in the brains of PD patients. Similarly, deposits of aggregated human islet amyloid polypeptide (IAPP) are found in the pancreatic islets in individuals with type 2 diabetes mellitus.

View Article and Find Full Text PDF

Islet amyloid polypeptide (IAPP) is a 37 residue intrinsically disordered protein whose aggregation is associated with Type II diabetes. Like most amyloids, it appears that the intermediate aggregates ("oligomers") of IAPP are more toxic than the mature fibrils, and interaction with the cell membrane is likely to be an integral component of the toxicity. Here we probe the membrane affinity and the conformation of the peptide as a function of its aggregation state.

View Article and Find Full Text PDF

Aggregation of huntingtin protein arising from expanded polyglutamine (polyQ) sequences in the exon-1 region of mutant huntingtin plays a central role in the pathogenesis of Huntington's disease. The huntingtin aggregation pathways are of therapeutic and diagnostic interest, but obtaining critical information from the physiologically relevant htt exon-1 (Httex1) protein has been challenging. Using biophysical techniques and an expression and purification protocol that generates clean, monomeric Httex1, we identified and mapped three distinct aggregation pathways: 1) unseeded in solution; 2) seeded in solution; and 3) membrane-mediated.

View Article and Find Full Text PDF

Monoamine neurotransmission is key to neuromodulation, but imaging monoamines in live neurons has remained a challenge. Here we show that externally added ortho-phthalaldehyde (OPA) can permeate live cells and form bright fluorogenic adducts with intracellular monoamines (e.g.

View Article and Find Full Text PDF

Shape complementarity between close-packed residues plays a critical role in the amyloid aggregation process. Here, we probe such "steric zipper" interactions in amyloid-β (Aβ), whose aggregation is linked to Alzheimer's disease, by replacing natural residues by their stereoisomers. Such mutations are expected to specifically destabilize the shape sensitive "packing" interactions, which may potentially increase their solubility and change other properties.

View Article and Find Full Text PDF

Amyloid-β peptides and their metal-associated aggregated states have been implicated in the pathogenesis of Alzheimer's disease. The present paper epitomises the design and synthesis of a small, neutral, lipophilic benzothiazole Schiff base (E)-2-((6-chlorobenzo[d]thiazol-2-ylimino)methyl)-5-diethylamino)phenol (CBMDP), and explores its multifunctionalty as a potential metal chelator/fluorophore using UV-visible absorption, steady-state fluorescence, single molecule fluorescence correlation spectroscopic (FCS) techniques which is further corroborated by in silico studies. Some pharmaceutically relevant properties of the synthesized compound have also been calculated theoretically.

View Article and Find Full Text PDF

Small hydrophobic oligomers of aggregation-prone proteins are thought to be generically toxic. Here we examine this view by perturbing an early folding contact between Phe19 and Leu34 formed during the aggregation of Alzheimer's amyloid-β (Aβ40) peptide. We find that even conservative single mutations altering this interaction can abolish Aβ40 toxicity.

View Article and Find Full Text PDF

The process of self-assembly is universal and lies at the heart of biological structures and function. Peptide aggregation, while considered a nuisance in peptide chemistry, soon gained interest with the discovery of pore-forming peptide toxins and had been an area of intense research during last century and even to date. This has also resulted in the increasing use of the more respectable term peptide self-assembly.

View Article and Find Full Text PDF

Aggregation of a polypeptide chain into highly ordered amyloid aggregates is a complex process. Various factors, both extrinsic and intrinsic to the polypeptide chain, have been shown to perturb this process, leading to a drastic change in the amyloidogenic behavior, which is reflected in the polymorphism of amyloid aggregates at various levels of self-assembly. In this paper, we have investigated the ability of covalently linked long-chain fatty acids in modulating the self-assembly of an aromatic amino acid-rich highly amyloidogenic sequence derived from the amino acid region 59-71 of human β2-microglobulin by thioflavin T (ThT) fluorescence microscopy, circular dichroism, and fluorescence spectroscopy.

View Article and Find Full Text PDF

The SH4 domain of Src family of nonreceptor protein tyrosine kinases represents the extreme N-terminal 1-16 amino acid region which mediates membrane association of these proteins and facilitates their functions. The SH4 domains among Src members lack well-defined sequence consensus and vary in the net charge. However, they readily anchor to the cytoplasmic face of the plasma membrane upon fatty acid acylation.

View Article and Find Full Text PDF

The SH4 domain of Fyn, a member of the Src family of tyrosine kinases, though rich in polar amino acid residues, anchors to the cytosolic face of membranes upon fatty acylation. In order to probe the requirement of specific fatty acylation at the N-terminus and at the side-chain of this domain for membrane-association, we have studied the interaction of peptides corresponding to the polar segment of the SH4 domain of Fyn and its mono- and dually fatty acylated analogs with model membranes. While the polar segment without covalently linked fatty acids (KDKEATKLTEW-amide) does not interact with lipid vesicles, peptides with one covalently linked fatty acid at the N-terminus or in the side-chain, associate with zwitterionic and anionic lipids to varying degrees.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionehl6uun8fqhkkgifofc6jab025asj2ck): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once