Front Bioeng Biotechnol
August 2022
The use of fetal bovine serum (FBS) in animal cell culture media is widely spread since it provides a broad spectrum of molecules that are known to support cell attachment and growth. However, the harvest and collection procedures of FBS raise ethical concerns and serum is an ill-defined and expensive component. This is especially problematic when it comes to regulatory approval for food applications like cultured meat.
View Article and Find Full Text PDFFor several tissue engineering applications, in particular food products, scaling up culture of mammalian cells is a necessary task. The prevailing method for large scale cell culture is the stirred tank bioreactor where anchor dependent cells are grown on microcarriers suspended in medium. We use a spinner flask system with cells grown on microcarriers to optimize the growth of bovine myoblasts.
View Article and Find Full Text PDFScope: Nutritional intervention during muscle wasting aims to attenuate net muscle protein loss. Branched chain amino acids, especially leucine, are able to stimulate the anabolic mammalian target of rapamycin (mTOR) signalling cascade and protein synthesis. It has been suggested that muscle myofibrillar protein expression is more responsive to amino acid supplementation compared to cytoplasmic proteins, although accretion of myofibrillar proteins has not extensively been investigated.
View Article and Find Full Text PDFAm J Physiol Lung Cell Mol Physiol
January 2012
Loss of diaphragm muscle strength in inflammatory lung disease contributes to mortality and is associated with diaphragm fiber atrophy. Ubiquitin (Ub) 26S-proteasome system (UPS)-dependent protein breakdown, which mediates muscle atrophy in a number of physiological and pathological conditions, is elevated in diaphragm muscle of patients with chronic obstructive pulmonary disease. Nuclear factor kappa B (NF-κB), an essential regulator of many inflammatory processes, has been implicated in the regulation of poly-Ub conjugation of muscle proteins targeted for proteolysis by the UPS.
View Article and Find Full Text PDFPalmitate activates the NF-κB pathway, and induces accumulation of lipid metabolites and insulin resistance in skeletal muscle cells. Little information is available whether and how these processes are causally related. Therefore, the objectives were to investigate whether intra-cellular lipid metabolites are involved in FA-induced NF-κB activation and/or insulin resistance in skeletal muscle and to investigate whether FA-induced insulin resistance and NF-κB activation are causally related.
View Article and Find Full Text PDFScope: The capacity of skeletal muscle to contribute to glucose homeostasis depends on muscular insulin sensitivity. The expression of glucose transporter (GLUT)-4 is increased during myoblast differentiation, a process essential in maintenance of adult muscle. Therefore, processes that affect muscle differentiation may influence insulin dependent glucose homeostasis.
View Article and Find Full Text PDFLong-chain saturated fatty acids such as palmitic acid induce insulin resistance and NF-kappaB activation in skeletal muscle cells. Here we investigated the effects of long-chain fatty acid (FA) saturation and configuration on NF-kappaB activity and insulin sensitivity in cultured skeletal muscle cells. Of all tested unsaturated FAs, only elaidic acid (3-fold), cis9,trans11-CLA (3-fold) and trans10,cis12-CLA (13-fold) increased NF-kappaB transactivation in myotubes.
View Article and Find Full Text PDF