Dengue virus (DENV) is an increasingly important human pathogen, with already half of the globe's population living in environments with transmission potential. Since only a minority of cases are captured by direct detection methods (RT-PCR or antigen tests), serological assays play an important role in the diagnostic process. However, individual assays can suffer from low sensitivity and specificity and interpreting results from multiple assays remains challenging, particularly because interpretations from multiple assays may differ, creating uncertainty over how to generate finalized interpretations.
View Article and Find Full Text PDFUncovering rates at which susceptible individuals become infected with a pathogen, i.e. the force of infection (FOI), is essential for assessing transmission risk and reconstructing distribution of immunity in a population.
View Article and Find Full Text PDFBackground: The aim of this study was to compare the predictive performance of three statistical models-logistic regression, classification tree, and structural equation model (SEM)-in predicting severe dengue illness.
Methods/findings: We adopted modified classification of dengue illness severity based on WHO 1997 guideline. Predictive models were constructed using demographic factors and laboratory indicators on the day of fever occurrence.
Although it is known that household infections drive the transmission of dengue virus (DENV), it is unclear how household composition and the immune status of inhabitants affect the individual risk of infection. Most population-based studies to date have focused on paediatric cohorts because more severe forms of dengue mainly occur in children, and the role of adults in dengue transmission is understudied. Here we analysed data from a multigenerational cohort study of 470 households, comprising 2,860 individuals, in Kamphaeng Phet, Thailand, to evaluate risk factors for DENV infection.
View Article and Find Full Text PDFInfants less than 1 y of age experience high rates of dengue disease in dengue virus (DENV) endemic countries. This burden is commonly attributed to antibody-dependent enhancement (ADE), whereby concentrations of maternally derived DENV antibodies become subneutralizing, and infection-enhancing. Understanding antibody-related mechanisms of enhanced infant dengue disease risk represents a significant challenge due to the dynamic nature of antibodies and their imperfect measurement processes.
View Article and Find Full Text PDFBackground: Dengue virus (DENV) often circulates endemically. In such settings with high levels of transmission, it remains unclear whether there are risk factors that alter individual infection risk.
Methods: We tested blood taken from individuals living in multigenerational households in Kamphaeng Phet province, Thailand for DENV antibodies (N = 2364, mean age 31 years).
Individual houses with high risks of dengue virus (DENV) transmission might be a source of virus transmission within the neighborhood. We conducted an entomological risk assessment for DENV transmission at the household level, comprising family cohort members residing in the same location, to assess the risk for dengue virus transmitted by mosquito vectors. The studies were conducted in Kamphaeng Phet Province, Thailand, during 2016-2020.
View Article and Find Full Text PDFMemory T cells resulting from primary dengue virus (DENV) infection are hypothesized to influence the clinical outcome of subsequent DENV infection. However, the few studies involving prospectively collected blood samples have found weak and inconsistent associations with outcome and variable temporal trends in DENV-specific memory T cell responses between subjects. This study used both and cultured ELISPOT assays to further evaluate the associations between DENV serotype-cross-reactive memory T cells and severity of secondary infection.
View Article and Find Full Text PDFHere, we describe the development of the in-house anti-Zika virus (ZIKV) IgM antibody capture ELISA (in-house ZIKV IgM ELISA) for the detection and diagnosis of acute ZIKV infections. We compared the in-house ZIKV IgM ELISA assay performance against two commercial kits, Euroimmun ZIKV IgM and InBios 2.0 ZIKV IgM ELISA.
View Article and Find Full Text PDFMore than half of the world's population lives in areas at risk for dengue virus infection. A vaccine will be pivotal to controlling spread, however, the only licensed vaccine, Dengvaxia, has been shown to increase the risk of severe disease in a subset of individuals. Vaccine efforts are hampered by a poor understanding of antibody responses, including those generated by vaccines, and whether antibody titers can be used as a marker of protection from infection or disease.
View Article and Find Full Text PDFIn the latest World Health Organization (WHO) recommendation for Dengvaxia implementation, either serological testing or a person's history of prior dengue illness may be used as supporting evidence to identify dengue virus (DENV)-immune individuals eligible for vaccination, in areas with limited capacity for laboratory confirmation. This analysis aimed to estimate the concordance between self-reported dengue illness histories and seropositivity in a prospective cohort study for dengue virus infection in Kamphaeng Phet province, a dengue-endemic area in northern Thailand. The study enrolled 2,076 subjects from 516 multigenerational families, with a median age of 30.
View Article and Find Full Text PDFIntra-host single nucleotide variants (iSNVs) have been increasingly used in genomic epidemiology to increase phylogenetic resolution and reconstruct fine-scale outbreak dynamics. These analyses are preferably done on sequence data from direct clinical samples, but in many cases due to low viral loads, there might not be enough genetic material for deep sequencing and iSNV determination. Isolation of the virus from clinical samples with low-passage number increases viral load, but few studies have investigated how dengue virus (DENV) culture isolation from a clinical sample impacts the consensus sequence and the intra-host virus population frequencies.
View Article and Find Full Text PDFDengue human infection studies present an opportunity to address many longstanding questions in the field of flavivirus biology. However, limited data are available on how the immunological and transcriptional response elicited by an attenuated challenge virus compares to that associated with a wild-type DENV infection. To determine the kinetic transcriptional signature associated with experimental primary DENV-1 infection and to assess how closely this profile correlates with the transcriptional signature accompanying natural primary DENV-1 infection, we utilized scRNAseq to analyze PBMC from individuals enrolled in a DENV-1 human challenge study and from individuals experiencing a natural primary DENV-1 infection.
View Article and Find Full Text PDFJ Infect Dis
August 2020
Background: Major histocompatibility complex class I chain-related (MIC) A and B (MICA and MICB) are polymorphic stress molecules recognized by natural killer cells. This study was performed to analyze MIC gene profiles in hospitalized Thai children with acute dengue illness.
Methods: MIC allele profiles were determined in a discovery cohort of patients with dengue fever or dengue hemorrhagic fever (DHF) (n = 166) and controls (n = 149).
Dengue is one of the most widespread vector-borne viral diseases in the world. However, the size, heterogeneity, and temporal dynamics of the cell-associated viral reservoir during acute dengue virus (DENV) infection remains unclear. In this study, we analyzed cells infected in vitro with DENV and PBMC from an individual experiencing a natural DENV infection utilizing 5' capture single cell RNA sequencing (scRNAseq).
View Article and Find Full Text PDFAntibody-mediated humoral immunity is thought to play a central role in mediating the immunopathogenesis of acute DENV infection, but limited data are available on the diversity, specificity, and functionality of the antibody response at the molecular level elicited by primary or secondary DENV infection. In order to close this functional gap in our understanding of DENV-specific humoral immunity, we utilized high-throughput single cell RNA sequencing to investigate B cells circulating in both primary and secondary natural DENV infections. We captured full-length paired immunoglobulin receptor sequence data from 9,027 B cells from a total of 6 subjects, including 2,717 plasmablasts.
View Article and Find Full Text PDFBackground: A longitudinal cohort study performed in Cebu City, Philippines found that the presence of pre-existing chikungunya virus (CHIKV) neutralizing antibodies (NAb) was associated with a decreased risk of symptomatic CHIKV infection. However, the relationship between pre-existing NAb and the risk of subclinical seroconversion has not been well described.
Methods: Data were analyzed from a longitudinal cohort aged 6 months to 83 years who underwent active fever surveillance in Cebu City, Philippines from 2012 to 2014.
Prior exposure to dengue virus (DENV) has a profound impact on the outcome of infection, which varies according to the interval between infections. Antibodies secreted by B cells and cytokines secreted by T cells are thought to contribute both to protective immunity against DENV and the pathogenesis of dengue disease. We analyzed peripheral blood mononuclear cells (PBMC) collected from Thai children over a 5-year prospective cohort study to define the dynamics of DENV-specific memory B and T cell responses and the impact of symptomatic or subclinical DENV infections.
View Article and Find Full Text PDFBackground: Early recognition of dengue, particularly patients at risk for plasma leakage, is important to clinical management. The objective of this study was to build predictive models for dengue, dengue hemorrhagic fever (DHF), and dengue shock syndrome (DSS) using structural equation modelling (SEM), a statistical method that evaluates mechanistic pathways.
Methods/findings: We performed SEM using data from 257 Thai children enrolled within 72 h of febrile illness onset, 156 with dengue and 101 with non-dengue febrile illnesses.
Background: Follicular helper T cells (TFH) are specialized CD4 T cells required for B-cell help and antibody production.
Methods: Given the postulated role of immune activation in dengue disease, we measured the expansion and activation of TFH in the circulation (peripheral TFH [pTFH]) collected from Thai children with laboratory-confirmed acute dengue virus (DENV) infection.
Results: We found significant expansion and activation of pTFH subsets during acute infection with the highest frequencies of activated pTFH (PD1hi pTFH and PD1+CD38+ pTFH) detected during the critical phase of illness.
The global burden of dengue and its geographic distribution have increased over the past several decades. The introduction of dengue in new areas has often been accompanied by high case-fatality rates. Drawing on the experience in managing dengue cases at the Queen Sirikit National Institute of Child Health in Bangkok, Thailand, this article provides the authors' perspectives on key clinical lessons to improve dengue-related outcomes.
View Article and Find Full Text PDFDengue remains one of the most important mosquito-borne diseases worldwide. Infection with one of the serologically related dengue viruses (DENVs) can lead to a wide range of clinical manifestations and severity. Severe dengue is characterized by plasma leakage and abnormal bleeding that can lead to shock and death.
View Article and Find Full Text PDFDengue, caused by dengue viruses (DENVs), is the most common arboviral disease of humans. Several dengue vaccine candidates are at different stages of clinical development and one has been licensed. Inoculation with live-attenuated DENV constructs is an approach that has been used by vaccine developers.
View Article and Find Full Text PDF