Coronaviruses express their structural and accessory genes via a set of subgenomic RNAs, whose synthesis is directed by transcription regulatory sequences (TRSs) in the 5' genomic leader and upstream of each body open reading frame. In SARS-CoV-2, the TRS has the consensus AAACGAAC; upon searching for emergence of this motif in the global SARS-CoV-2 sequences, we find that it evolves frequently, especially in the 3' end of the genome. We show well-supported examples upstream of the Spike gene-within the nsp16 coding region of ORF1b-which is expressed during human infection, and upstream of the canonical Envelope gene TRS, both of which have evolved convergently in multiple lineages.
View Article and Find Full Text PDFThe 3' untranslated region (3'UTR) plays a crucial role in determining mRNA stability, localisation, translation and degradation. Cap analysis of gene expression (CAGE), a method for the detection of capped 5' ends of mRNAs, additionally reveals a large number of apparently 5' capped RNAs derived from locations within the body of the transcript, including 3'UTRs. Here, we provide direct evidence that these 3'UTR-derived RNAs are indeed capped and widespread in mammalian cells.
View Article and Find Full Text PDFNeuronal differentiation requires building a complex intracellular architecture, and therefore the coordinated regulation of defined sets of genes. RNA-binding proteins (RBPs) play a key role in this regulation. However, while their action on individual mRNAs has been explored in depth, the mechanisms used to coordinate gene expression programs shaping neuronal morphology are poorly understood.
View Article and Find Full Text PDFCrosslinking and immunoprecipitation (CLIP) technologies have become a central component of the molecular biologists' toolkit to study protein-RNA interactions and thus to uncover core principles of RNA biology. There has been a proliferation of CLIP-based experimental protocols, as well as computational tools, especially for peak-calling. Consequently, there is an urgent need for a well-documented bioinformatic pipeline that enshrines the principles of robustness, reproducibility, scalability, portability and flexibility while embracing the diversity of experimental and computational CLIP tools.
View Article and Find Full Text PDFAmyotrophic Lateral Sclerosis (ALS) causes motor neuron degeneration, with 97% of cases exhibiting TDP-43 proteinopathy. Elucidating pathomechanisms has been hampered by disease heterogeneity and difficulties accessing motor neurons. Human induced pluripotent stem cell-derived motor neurons (iPSMNs) offer a solution; however, studies have typically been limited to underpowered cohorts.
View Article and Find Full Text PDFThe structure of mRNA molecules plays an important role in its interactions with trans-acting factors, notably RNA binding proteins (RBPs), thus contributing to the functional consequences of this interplay. However, current transcriptome-wide experimental methods to chart these interactions are limited by their poor sensitivity. Here we extend the hiCLIP atlas of duplexes bound by Staufen1 (STAU1) ∼10-fold, through careful consideration of experimental assumptions, and the development of bespoke computational methods which we apply to existing data.
View Article and Find Full Text PDFCLIP technologies are now widely used to study RNA-protein interactions and many data sets are now publicly available. An important first step in CLIP data exploration is the visual inspection and assessment of processed genomic data on selected genes or regions and performing comparisons: either across conditions within a particular project, or incorporating publicly available data. However, the output files produced by data processing pipelines or preprocessed files available to download from data repositories are often not suitable for direct comparison and usually need further processing.
View Article and Find Full Text PDFRNA-binding proteins (RBPs) act as posttranscriptional regulators controlling the fate of target mRNAs. Unraveling how RNAs are recognized by RBPs and in turn are assembled into neuronal RNA granules is therefore key to understanding the underlying mechanism. While RNA sequence elements have been extensively characterized, the functional impact of RNA secondary structures is only recently being explored.
View Article and Find Full Text PDFMutations causing amyotrophic lateral sclerosis (ALS) often affect the condensation properties of RNA-binding proteins (RBPs). However, the role of RBP condensation in the specificity and function of protein-RNA complexes remains unclear. We created a series of TDP-43 C-terminal domain (CTD) variants that exhibited a gradient of low to high condensation propensity, as observed in vitro and by nuclear mobility and foci formation.
View Article and Find Full Text PDFReactive astrocytes are implicated in amyotrophic lateral sclerosis (ALS), although the mechanisms controlling reactive transformation are unknown. We show that decreased intron retention (IR) is common to human-induced pluripotent stem cell (hiPSC)-derived astrocytes carrying ALS-causing mutations in VCP, SOD1 and C9orf72. Notably, transcripts with decreased IR and increased expression are overrepresented in reactivity processes including cell adhesion, stress response and immune activation.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDFStudies of spliceosomal interactions are challenging due to their dynamic nature. Here we used spliceosome iCLIP, which immunoprecipitates SmB along with small nuclear ribonucleoprotein particles and auxiliary RNA binding proteins, to map spliceosome engagement with pre-messenger RNAs in human cell lines. This revealed seven peaks of spliceosomal crosslinking around branchpoints (BPs) and splice sites.
View Article and Find Full Text PDFThe CRISPR-Cas9 system has successfully been adapted to edit the genome of various organisms. However, our ability to predict the editing outcome at specific sites is limited. Here, we examined indel profiles at over 1,000 genomic sites in human cells and uncovered general principles guiding CRISPR-mediated DNA editing.
View Article and Find Full Text PDFLong mammalian introns make it challenging for the RNA processing machinery to identify exons accurately. We find that LINE-derived sequences (LINEs) contribute to this selection by recruiting dozens of RNA-binding proteins (RBPs) to introns. This includes MATR3, which promotes binding of PTBP1 to multivalent binding sites within LINEs.
View Article and Find Full Text PDFAnnu Rev Biomed Data Sci
July 2018
An interplay of experimental and computational methods is required to achieve a comprehensive understanding of protein-RNA interactions. UV crosslinking and immunoprecipitation (CLIP) identifies endogenous interactions by sequencing RNA fragments that copurify with a selected RNA-binding protein under stringent conditions. Here we focus on approaches for the analysis of the resulting data and appraise the methods for peak calling, visualization, analysis, and computational modeling of protein-RNA binding sites.
View Article and Find Full Text PDFThe structure of RNA molecules has a critical role in regulating gene expression, largely through influencing their interactions with RNA-binding proteins (RBPs). RNA hybrid and individual-nucleotide resolution UV cross-linking and immunoprecipitation (hiCLIP) is a transcriptome-wide method of monitoring these interactions by identifying RNA duplexes bound by a specific RBP. The hiCLIP protocol consists of the following steps: in vivo cross-linking of RBPs to their bound RNAs; partial RNA digestion and purification of RNA duplexes interacting with the specific RBP using immunoprecipitation; ligation of the two arms of RNA duplexes via a linker; reverse transcription; cDNA library amplification; and finally high-throughput DNA sequencing.
View Article and Find Full Text PDFThere have been a number of developments in the management of venous thromboembolism over the past few years. Old questions, such as thrombolysis, have been revisited in recent trials. New initiatives, such as ambulatory care pathways, are being established across the country.
View Article and Find Full Text PDFAm J Respir Crit Care Med
February 2013
Rationale: MicroRNAs (miRNAs or miRs) are implicated in the pathogenesis of various cardiovascular diseases, including pulmonary arterial hypertension (PAH).
Objectives: We sought to measure changes in plasma levels of miRNAs in patients with PAH and relate them to the severity of the disease.
Methods: A microarray screen was performed on total plasma RNA from eight patients with PAH and eight healthy control subjects.