Publications by authors named "Anny Singgih"

We recently found that deletion of the gulonolactone oxidase gene, which is involved in the synthesis of ascorbic acid (AA), was responsible for the fracture phenotype in spontaneous fracture mice. To explore the molecular mechanisms by which AA regulates osteoblast differentiation, we examined the effect of AA on osterix expression via Nrf1 (NF-E2-related factor-1) binding to antioxidant-responsive element (ARE) in bone marrow stromal (BMS) cells. AA treatment caused a 6-fold increase in osterix expression in mutant BMS cells at 24 h, which was unaffected by pretreatment with protein synthesis inhibitor.

View Article and Find Full Text PDF

Unlabelled: Using a mouse mutant that fractures spontaneously and dies at a very young age, we identified that a deletion of the GULO gene, which is involved in the synthesis of vitamin C, is the cause of impaired osteoblast differentiation, reduced bone formation, and development of spontaneous fractures.

Introduction: A major public health problem worldwide, osteoporosis is a disease characterized by inadequate bone mass necessary for mechanical support, resulting in bone fracture. To identify the genetic basis for osteoporotic fractures, we used a mouse model that develops spontaneous fractures (sfx) at a very early age.

View Article and Find Full Text PDF

A common genetic variant in the methylenetetrahydrofolate reductase (MTHFR) gene involving a cytosine to thymidine (C-->T) transition at nucleotide 677 is associated with reduced enzyme activity, altered folate status and potentially higher folate requirements. The objectives of this study were to investigate the effect of the MTHFR 677 T allele on folate status variables in Mexican women (n = 43; 18-45 y) and to assess the adequacy of the 1998 folate U.S.

View Article and Find Full Text PDF