Publications by authors named "Anny Robert"

Mesenchymal stem/stromal cells (MSCs) and their extracellular vesicles (MSC-EVs) have been described to have important roles in tissue regeneration, including tissue repair, control of inflammation, enhancing angiogenesis, and regulating extracellular matrix remodeling. MSC-EVs have many advantages for use in regeneration therapies such as facility for dosage, histocompatibility, and low immunogenicity, thus possessing a lower possibility of rejection. In this work, we address the potential activity of MSC-EVs isolated from adipose-derived MSCs (ADMSC-EVs) cultured on cross-linked dextran microcarriers, applied to test the scalability and reproducibility of EV production.

View Article and Find Full Text PDF

Unlabelled: is a highly fatal fungal pathogen affecting individuals with advanced HIV disease. Molecular patterns and ultrastructural aspects of are unknown, and pathogenic models have not been investigated in detail. Since the cell wall of fungi is a determinant for interaction with the host and antifungal development, we characterized the ultrastructural aspects of and the general properties of cell wall components under different conditions of growth and .

View Article and Find Full Text PDF

Condylar resorption is an aggressive and disability form of temporomandibular joint (TMJ) degenerative disease, usually non-respondent to conservative or minimally invasive therapies and often leading to surgical intervention and prostheses implantation. This condition is also one of the most dreaded postoperative complications of orthognathic surgery, with severe cartilage erosion and loss of subchondral bone volume and mineral density, associated with a painful or not inflammatory processes. Because regenerative medicine has emerged as an alternative for orthopedic cases with advanced degenerative joint disease, we conducted a phase I/IIa clinical trial (U1111-1194-6997) to evaluate the safety and efficacy of autologous nasal septal chondroprogenitor cells.

View Article and Find Full Text PDF

Articular cartilage injuries are inherently irreversible, even with the advancement in current therapeutic options. Alternative approaches, such as the use of mesenchymal stem/stromal cells (MSCs) and tissue engineering techniques, have gained prominence. MSCs represent an ideal source of cells due to their low immunogenicity, paracrine activity, and ability to differentiate.

View Article and Find Full Text PDF

Organ transplantation is understood as a technique where an organ from a donor patient is transferred to a recipient patient. This practice gained strength in the 20th century and ensured advances in areas of knowledge such as immunology and tissue engineering. The main problems that comprise the practice of transplants involve the demand for viable organs and immunological aspects related to organ rejection.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) are nanometric particles that enclose cell-derived bioactive molecules in a lipid bilayer and serve as intercellular communication tools. Accordingly, in various biological contexts, EVs are reported to engage in immune modulation, senescence, and cell proliferation and differentiation. Therefore, EVs could be key elements for potential off-the-shelf cell-free therapy.

View Article and Find Full Text PDF

NiFeMo alloy nanoparticles were synthesized by co-precipitation in the presence of organic additives. Nanoparticles thermal evolution shows that there is a significant increase in the average size (from 28 to 60 nm), consolidating a crystalline structure of the same type as the Ni Fe phase but with lattice parameter a = 0.362 nm.

View Article and Find Full Text PDF

The study of adipogenesis is essential for understanding and treating obesity, a multifactorial problem related to body fat accumulation that leads to several life-threatening diseases, becoming one of the most critical public health problems worldwide. In this review, we propose to provide the highlights of the adipogenesis study based on in vitro differentiation of human mesenchymal stem cells (hMSCs). We list in silico methods, such as molecular docking for identification of molecular targets, and in vitro approaches, from 2D, more straightforward and applied for screening large libraries of substances, to more representative physiological models, such as 3D and bioprinting models.

View Article and Find Full Text PDF

Endothelial-like cells may be obtained from CD133 mononuclear cells isolated from human umbilical cord blood (hUCB) and expanded using endothelial-inducing medium (E-CD133 cells). Their use in regenerative medicine has been explored by the potential not only to form vessels but also by the secretion of bioactive elements. Extracellular vesicles (EVs) are prominent messengers of this paracrine activity, transporting bioactive molecules that may guide cellular response under different conditions.

View Article and Find Full Text PDF

Cartilage repair has been a challenge in the medical field for many years. Although treatments that alleviate pain and injury are available, none can effectively regenerate the cartilage. Currently, regenerative medicine and tissue engineering are among the developed strategies to treat cartilage injury.

View Article and Find Full Text PDF

The study of the secretome of different cell types has gained prominence over the years due to its role in understanding the cell microenvironment and possible uses in acellular therapies. Approaches in this field include proteomic characterizations of the secretomes as well as evaluating their potential to induce cell and tissue responses. Here, we present the mass spectrometry proteomics data from a characterization of the secretome of cardiac resident stromal cells (CRSCs) and dermal fibroblasts in order to compare their compositions.

View Article and Find Full Text PDF

The secretome of different cell types has been applied on in vitro and in vivo assays, indicating considerable therapeutic potential. However, the choice of the ideal cell type and culture conditions for obtaining the best set of soluble factors, as well as the assays to assess specific effects, remain subjects of vigorous debate. In this study, we used mass spectrometry to characterize the secretomes of ventricle derived-cardiac resident stromal cells (vCRSC) and human dermal fibroblasts (HDFs) and evaluate them in an effort to understand the niche specificity of biological responses toward different cellular behaviors, such as cell proliferation, adhesion, migration, and differentiation.

View Article and Find Full Text PDF

Bismuth-based nanoparticles (BiNPs) have attracted attention for their potential biomedical applications. However, there is a lack of information concerning their interaction with biological systems. In this study, it was investigated the effect of physically synthesized BiNPs to human adipose-derived stem cells (ADSCs).

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) are remarkable tools for regenerative medicine. Therapeutic approaches using these cells can promote increased activity and viability in several cell types through diverse mechanisms such as paracrine and immunomodulatory activities, contributing substantially to tissue regeneration and functional recovery. However, biological samples of human MSCs, usually obtained from adult tissues, often exhibit variable behavior during in vitro culture, especially with respect to cell population heterogeneity, replicative senescence, and consequent loss of functionality.

View Article and Find Full Text PDF

Background: Human adipose-derived stromal/stem cells (hASCs) are one of the most useful types of mesenchymal stromal/stem cells, which are adult multipotent cells with great therapeutic potential for the treatment of several diseases. However, for successful clinical application, it is critical that high-quality cells can be obtained. Diverse factors seem to be able to influence cell quality and performance, especially factors related to donors' intrinsic characteristics, such as age.

View Article and Find Full Text PDF

Adipogenesis, osteogenesis and chondrogenesis of human mesenchymal stem/stromal cells (MSC) are complex and highly regulated processes. Over the years, several studies have focused on understanding the mechanisms involved in the MSC commitment to the osteogenic, adipogenic and/or chondrogenic phenotypes. High-throughput methodologies have been used to investigate the gene expression profile during differentiation.

View Article and Find Full Text PDF

Ischemic heart diseases are a global health problem that requires the search for alternative therapies to the current treatments. Thus, an understanding of how cardiomyogenic signals can affect cellular behavior would allow us to create strategies to improve the cell recovery in damaged tissues. In this study, we aimed to evaluate the effects of the conditioned medium (CM), collected at different time points during in vitro cardiomyogenesis of human embryonic stem cells (hESCs), to direct cell behavior.

View Article and Find Full Text PDF

Posttranscriptional regulation plays a fundamental role in the biology of embryonic stem cells (ESCs). Many studies have demonstrated that multiple mRNAs are coregulated by one or more RNA-binding proteins (RBPs) that orchestrate mRNA expression. A family of RBPs, which is known as the Pumilio-FBF (PUF) family, is highly conserved among different species and has been associated with the undifferentiated and differentiated states of different cell lines.

View Article and Find Full Text PDF

Human pluripotent stem cells are an important tool for the study of developmental processes, such as cardiomyogenic differentiation. Despite the advances made in this field, the molecular and cellular signals involved in the commitment of embryonic stem cells to the cardiac phenotype are still under investigation. Therefore, this study focuses on identifying the extracellular signals involved in cardiac differentiation of human embryonic stem cells.

View Article and Find Full Text PDF

An important tool to study the regulation of gene expression is the sequencing and the analysis of different RNA fractions: total, ribosome-free, monosomal and polysomal. By comparing these different populations, it is possible to identity which genes are differentially expressed and to get information on how transcriptional and translational regulation modulates cellular function. Therefore, we used this strategy to analyze the regulation of gene expression of human adipose-derived stem cells during the triggering of the adipogenic and osteogenic differentiation.

View Article and Find Full Text PDF

The Zika virus (ZIKV) is an arthropod-borne virus that belongs to the Flaviviridae family. The ZIKV infection is usually asymptomatic or is associated with mild clinical manifestations; however, increased numbers of cases of microcephaly and birth defects have been recently reported. To date, neither a vaccine nor an antiviral treatment has become available to control ZIKV replication.

View Article and Find Full Text PDF

Pluripotent stem cells (PSC) can be used as a model to study cardiomyogenic differentiation. modeling can reproduce cardiac development through modulation of some key signaling pathways. Therefore, many studies make use of this strategy to better understand cardiomyogenesis complexity and to determine possible ways to modulate cell fate.

View Article and Find Full Text PDF

Multipotent stromal cells stimulate skin regeneration after acute or chronic injuries. However, many stem cell therapy protocols are limited by the elevated number of cells required and poor cell survival after transplantation. Considering that the beneficial effects of multipotent stromal cells on wound healing are typically mediated by paracrine mechanisms, we examined whether the conditioned medium from skin-derived multipotent stromal cells would be beneficial for restoring the skin structure of mice after wounding.

View Article and Find Full Text PDF

Background: Cardiac cell fate specification occurs through progressive steps, and its gene expression regulation features are still being defined. There has been an increasing interest in understanding the coordination between transcription and post-transcriptional regulation during the differentiation processes. Here, we took advantage of the polysome profiling technique to isolate and high-throughput sequence ribosome-free and polysome-bound RNAs during cardiomyogenesis.

View Article and Find Full Text PDF

The regulation of gene expression acts at numerous complementary levels to control and refine protein abundance. The analysis of mRNAs associated with polysomes, called polysome profiling, has been used to investigate the post-transcriptional mechanisms that are involved in different biological processes. Pluripotent stem cells are able to differentiate into a variety of cell lineages, and the cell commitment progression is carefully orchestrated.

View Article and Find Full Text PDF