Publications by authors named "Annmarie Carlton"

Wet chemical oxidation (WCO) methods measure total organic carbon (TOC) in aqueous solutions through the formation and detection of carbon dioxide (CO). Prior research documents chloride (Cl) interference during WCO. However, the mechanism that determines WCO interference is not established.

View Article and Find Full Text PDF
Article Synopsis
  • Fine particulate matter (PM) concentrations are showing a decline across the U.S., but ammonium nitrate plays a significant role in PM mass, particularly in the western states like California.
  • This study focuses on the San Joaquin Valley, an area with persistent air quality issues, estimating that nearly 20% of PM mass may be lost from filters due to ammonium nitrate volatilization, especially during the fall and winter.
  • The findings indicate that when accounting for nitrate loss, PM mass trends in areas like Kern County show a much greater decline, suggesting that official PM concentration reports from regulatory networks may underestimate actual air quality problems, especially in environmental justice regions.
View Article and Find Full Text PDF

In the U.S., the agricultural sector is the largest controllable source of several air pollutants, including ammonia (NH), which is a key precursor to PM formation.

View Article and Find Full Text PDF

Particle chemical composition affects aerosol optical and physical properties in ways important for the fate, transport, and impact of atmospheric particulate matter. For example, hygroscopic constituents take up water to increase the physical size of a particle, which can alter the extinction properties and atmospheric lifetime. At the collocated AERosol RObotic NETwork (AERONET) and Interagency Monitoring of PROtected Visual Environments (IMPROVE) network monitoring stations in rural Bondville, Illinois, we employ a novel cloudiness determination method to compare measured aerosol physicochemical properties on predominantly cloudy and clear sky days from 2010 to 2019.

View Article and Find Full Text PDF

Liquid water is a dominant and critical tropospheric constituent. Over polluted land masses low level cumulus clouds interact with boundary layer aerosol. The planetary boundary layer (PBL) is the lowest atmospheric layer and is directly influenced by Earth's surface.

View Article and Find Full Text PDF

Total organic carbon (TOC) mass concentrations are decreasing across the contiguous United States (CONUS). We investigate decadal trends in organic carbon (OC) thermal fractions [OC1 (volatilizes at 140 °C), OC2 (280 °C), OC3 (480 °C), OC4 (580 °C)] and pyrolyzed carbon (PC), reported at 121 locations in the nteragency onitoring of tected isual nvironments (IMPROVE) network from 2005 to 2015 for 23 regions across the CONUS. Reductions in PC and OC2 drive decreases in TOC (TOC = OC1 + OC2 + OC3 + OC4 + PC) mass concentrations.

View Article and Find Full Text PDF

Models that accurately predict atmospheric composition and correctly respond to tested policy scenarios aid air quality managers in the development of effective strategies to protect human health. Controllable emissions from human activity interact with natural emissions from plants and trees from the biosphere through complex chemistry to form ozone (O) and organic fine particulate matter (PM), criteria air pollutants that induce a variety of adverse health effects. While organic gases emitted from plants and trees are natural, some fraction of the subsequent O and PM is not.

View Article and Find Full Text PDF

Recent laboratory studies have reported the formation of light-absorbing organic carbon compounds (brown carbon, BrC) in particles undergoing drying. Atmospheric particles undergo cycles of humidification and drying during vertical transport and through daily variations in temperature and humidity, which implies particle drying could potentially be an important source of BrC globally. In this work, we investigated BrC formation in ambient particles undergoing drying at a site in the eastern United States during summer.

View Article and Find Full Text PDF

In this paper, we present an analytical framework to establish a closed-form relationship between electricity generation expansion planning decisions and the resulting negative health externalities. Typical electricity generation expansion planning models determine the optimal technology-capacity-investment strategy that minimizes total investment costs as well as fixed and variable operation and maintenance costs. However, the relationship between these long-term planning decisions and the associated health externalities is highly stochastic and nonlinear, and it is computationally expensive to evaluate.

View Article and Find Full Text PDF

Atmospheric models that accurately describe the fate and transport of trace species for the right reasons aid in the development of effective air-quality management strategies that safeguard human health. Controllable emissions facilitate the formation of biogenic secondary organic aerosol (BSOA) to enhance the atmospheric fine particulate matter (PM) burden. Previous modeling with the EPA's Community Multiscale Air Quality (CMAQ) model predicted that anthropogenic primary organic aerosol (POA) emissions had the greatest impact on BSOA.

View Article and Find Full Text PDF

Concentrations of atmospheric trace species in the United States have changed dramatically over the past several decades in response to pollution control strategies, shifts in domestic energy policy and economics, and economic development (and resulting emission changes) elsewhere in the world. Reliable projections of the future atmosphere require models to not only accurately describe current atmospheric concentrations, but to do so by representing chemical, physical and biological processes with conceptual and quantitative fidelity. Only through incorporation of the processes controlling emissions and chemical mechanisms that represent the key transformations among reactive molecules can models reliably project the impacts of future policy, energy and climate scenarios.

View Article and Find Full Text PDF

Elevated water vapor (HO) mole fractions were occassionally observed downwind of Indianapolis, IN, and the Washington, D.C.-Baltimore, MD, area during airborne mass balance experiments conducted during winter months between 2012 and 2015.

View Article and Find Full Text PDF

The lack of statistically robust relationships between IEPOX (isoprene epoxydiol)-derived SOA (IEPOX SOA) and aerosol liquid water and pH observed during the 2013 Southern Oxidant and Aerosol Study (SOAS) emphasizes the importance of modeling the whole system to understand the controlling factors governing IEPOX SOA formation. We present a mechanistic modeling investigation predicting IEPOX SOA based on Community Multiscale Air Quality (CMAQ) model algorithms and a recently introduced photochemical box model, simpleGAMMA. We aim to (1) simulate IEPOX SOA tracers from the SOAS Look Rock ground site, (2) compare the two model formulations, (3) determine the limiting factors in IEPOX SOA formation, and (4) test the impact of a hypothetical sulfate reduction scenario on IEPOX SOA.

View Article and Find Full Text PDF

Isoprene epoxydiol (IEPOX), glyoxal, and methylglyoxal are ubiquitous water-soluble organic gases (WSOGs) that partition to aerosol liquid water (ALW) and clouds to form aqueous secondary organic aerosol (aqSOA). Recent laboratory-derived Setschenow (or salting) coefficients suggest glyoxal's potential to form aqSOA is enhanced by high aerosol salt molality, or "salting-in". In the southeastern U.

View Article and Find Full Text PDF

Laboratory studies of atmospheric chemistry characterize the nature of atmospherically relevant processes down to the molecular level, providing fundamental information used to assess how human activities drive environmental phenomena such as climate change, urban air pollution, ecosystem health, indoor air quality, and stratospheric ozone depletion. Laboratory studies have a central role in addressing the incomplete fundamental knowledge of atmospheric chemistry. This article highlights the evolving science needs for this community and emphasizes how our knowledge is far from complete, hindering our ability to predict the future state of our atmosphere and to respond to emerging global environmental change issues.

View Article and Find Full Text PDF

This paper describes the development and implementation of an extendable aqueous-phase chemistry option (AQCHEM -KMT(I)) for the Community Multiscale Air Quality (CMAQ) modeling system, version 5.1. Here, the Kinetic PreProcessor (KPP), version 2.

View Article and Find Full Text PDF

Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM/OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM/OC ratios in the SE US are often between 1.

View Article and Find Full Text PDF

On high electricity demand days, when air quality is often poor, regional transmission organizations (RTOs), such as PJM Interconnection, ensure reliability of the grid by employing peak-use electric generating units (EGUs). These "peaking units" are exempt from some federal and state air quality rules. We identify RTO assignment and peaking unit classification for EGUs in the Eastern U.

View Article and Find Full Text PDF

Water is a ubiquitous and abundant component of atmospheric aerosols. It influences light scattering, the hydrological cycle, atmospheric chemistry, and secondary particulate matter (PM) formation. Despite the critical importance of aerosol liquid water, mass concentrations are not well-known.

View Article and Find Full Text PDF

Underprediction of peak ambient pollution by air quality models hinders development of effective strategies to protect health and welfare. The U.S.

View Article and Find Full Text PDF

Aerosol liquid water (ALW) influences aerosol radiative properties and the partitioning of gas-phase water-soluble organic compounds (WSOCg) to the condensed phase. A recent modeling study drew attention to the anthropogenic nature of ALW in the southeastern United States, where predicted ALW is driven by regional sulfate. Herein, we demonstrate that ALW in the Po Valley, Italy, is also anthropogenic but is driven by locally formed nitrate, illustrating regional differences in the aerosol components responsible for ALW.

View Article and Find Full Text PDF

This study presents a first attempt to investigate the roles of fire aerosols in ozone (O(3)) photochemistry using an online coupled meteorology-chemistry model, the Weather Research and Foresting model with Chemistry (WRF-Chem). Four 1-month WRF-Chem simulations for August 2007, with and without fire emissions, were carried out to assess the sensitivity of O(3) predictions to the emissions and subsequent radiative feedbacks associated with large-scale fires in the Western United States (U.S.

View Article and Find Full Text PDF

Biogenic volatile organic compounds (BVOCs) contribute substantially to atmospheric carbon, exerting influence on air quality and climate. Two widely used models, the Model of Emissions of Gases and Aerosols from Nature (MEGAN) and the Biogenic Emission Inventory System (BEIS) are employed to generate emissions for application in the CMAQ air quality model. Predictions of isoprene, monoterpenes, ozone, formaldehyde, and secondary organic carbon (SOC) are compared to surface and aloft measurements made during an intensive study in the Ozarks, a large isoprene emitting region.

View Article and Find Full Text PDF