Brain metastases are a serious obstacle in the treatment of patients with human epidermal growth factor receptor-2 (HER2)-amplified breast cancer. Although extracranial disease is controlled with HER2 inhibitors in the majority of patients, brain metastases often develop. Because these brain metastases do not respond to therapy, they are frequently the reason for treatment failure.
View Article and Find Full Text PDFParabiosis-conjoined surgery to provide a shared circulation between two mice-has been previously developed to study the hematopoietic system. This protocol describes the use of parabiosis for efficient transplantation of skin from a transgenic to a wild-type mouse. It can be used to study the role of stromal cells in a spontaneous model of distant cancer dissemination (metastasis).
View Article and Find Full Text PDFStromal cells have been studied extensively in the primary tumor microenvironment. In addition, mesenchymal stromal cells may participate in several steps of the metastatic cascade. Studying this interaction requires methods to distinguish and target stromal cells originating from the primary tumor versus their counterparts in the metastatic site.
View Article and Find Full Text PDFThe role of stromal cells in the tumor microenvironment has been extensively characterized. We and others have shown that stromal cells may participate in several steps of the metastatic cascade. This protocol describes an isolated tumor perfusion model that enables studies of cancer and stromal cell shedding.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2010
Metastatic cancer cells (seeds) preferentially grow in the secondary sites with a permissive microenvironment (soil). We show that the metastatic cells can bring their own soil--stromal components including activated fibroblasts--from the primary site to the lungs. By analyzing the efferent blood from tumors, we found that viability of circulating metastatic cancer cells is higher if they are incorporated in heterotypic tumor-stroma cell fragments.
View Article and Find Full Text PDFIschemia/reperfusion (I/R) is often inevitable during hepatic surgery and may stimulate the outgrowth of colorectal micrometastases. Postischemic microcirculatory disturbances contribute to I/R damage and may induce prolonged tissue hypoxia and consequent stabilization of hypoxia-inducible factor (HIF)-1alpha. The aim of this study was to evaluate the contribution of postischemic microcirculatory disturbances, hypoxia, and HIF-1alpha to I/R-accelerated tumor growth.
View Article and Find Full Text PDF