Publications by authors named "Annika Warnatsch"

Neutrophil extracellular traps (NETs) promote atherosclerosis by inducing proinflammatory cytokines, but the underlying mechanism remains unknown. NET DNA is immunogenic, but given the cytotoxicity of NET histones, it is unclear how it activates cells without killing them. Here, we show that histones, DNA, citrullination, and fragmentation synergize to drive inflammation below the histone cytotoxicity threshold.

View Article and Find Full Text PDF

Understanding how immune challenges elicit different responses is critical for diagnosing and deciphering immune regulation. Using a modular strategy to interpret the complex transcriptional host response in mouse models of infection and inflammation, we show a breadth of immune responses in the lung. Lung immune signatures are dominated by either IFN-γ and IFN-inducible, IL-17-induced neutrophil- or allergy-associated gene expression.

View Article and Find Full Text PDF

How the number of immune cells recruited to sites of infection is determined and adjusted to differences in the cellular stoichiometry between host and pathogen is unknown. Here, we have uncovered a role for reactive oxygen species (ROS) as sensors of microbe size. By sensing the differential localization of ROS generated in response to microbes of different size, neutrophils tuned their interleukin (IL)-1β expression via the selective oxidation of NF-κB, in order to implement distinct inflammatory programs.

View Article and Find Full Text PDF

Secretion of the cytokine interleukin-1β (IL-1β) by macrophages, a major driver of pathogenesis in atherosclerosis, requires two steps: Priming signals promote transcription of immature IL-1β, and then endogenous "danger" signals activate innate immune signaling complexes called inflammasomes to process IL-1β for secretion. Although cholesterol crystals are known to act as danger signals in atherosclerosis, what primes IL-1β transcription remains elusive. Using a murine model of atherosclerosis, we found that cholesterol crystals acted both as priming and danger signals for IL-1β production.

View Article and Find Full Text PDF

During innate immune responses the delicate balance of protein synthesis, quality control and degradation is severely challenged by production of radicals and/or the massive synthesis of pathogen proteins. The regulated degradation of ubiquitin-tagged proteins by the ubiquitin proteasome system (UPS) represents one major pathway for the maintenance of cellular proteostasis and regulatory processes under these conditions. In addition, MHC class I antigen presentation is strictly dependent on an appropriate peptide supply by the UPS to efficiently prime CD8(+) T cells and to initiate an adaptive immune response.

View Article and Find Full Text PDF

We assessed the potential of using multielectrode arrays (MEAs) to investigate several physiological properties of the calyx of Held synapse in the medial nucleus of the trapezoid body of gerbil. Due to the large size of the synapse, it became widely employed in studies on synaptic mechanisms. Electrical stimulation at the midline evoked a characteristic compound signal consisting of a presynaptic volley (C(1)) and a postsynaptic response (C(2)).

View Article and Find Full Text PDF