Wound healing and skin regeneration after injury are complex biological processes, and deep injuries with a high degree of tissue destruction may result in severe scar formation. Clinically, scars can be classified into normal, hypertrophic and keloid scars. However, the molecular signature of each scar type is currently not known.
View Article and Find Full Text PDFIn 2015, the oncolytic herpes simplex virus 1 (HSV-1) T-VEC (talimogene laherparepvec) was approved for intratumoral injection in non-resectable malignant melanoma. To determine whether viral replication is required for oncolytic activity, we compared replication-deficient HSV-1 d106S with replication-competent T-VEC. High infectious doses of HSV-1 d106S killed melanoma (n = 10), head-and-neck squamous cell carcinoma (n = 11), and chondrosarcoma cell lines (n = 2) significantly faster than T-VEC as measured by MTT metabolic activity, while low doses of T-VEC were more effective over time.
View Article and Find Full Text PDFDepending on extent and depth, burn injuries and resulting scars may be challenging and expensive to treat and above all heavily impact the patients' lives. This systematic review represents the current state of knowledge on molecular pathways activated during burn wound healing. All currently known molecular information about gene expression and molecular interactions in mammals has been summarized.
View Article and Find Full Text PDFChronic infection with the hepatitis B virus (HBV) affects an estimated 257 million people worldwide and can lead to liver diseases such as cirrhosis and liver cancer. Viral replication is generally considered not to be cytopathic, and although some HBV proteins may have direct carcinogenic effects, the majority of HBV infection-related disease is related to chronic inflammation resulting from disrupted antiviral responses and aberrant innate immune reactions. Like all cells, healthy and HBV-infected cells communicate with each other, as well as with other cell types, such as innate and adaptive immune cells.
View Article and Find Full Text PDFIn human evolution, social group living and Pavlovian fear conditioning have evolved as adaptive mechanisms promoting survival and reproductive success. The evolutionarily conserved hypothalamic peptide oxytocin is a key modulator of human sociality, but its effects on fear conditioning are still elusive. In the present randomized controlled study involving 97 healthy male subjects, we therefore employed functional magnetic resonance imaging and simultaneous skin conductance response (SCR) measures to characterize the modulatory influence of intranasal oxytocin (24 IU) on Pavlovian fear conditioning.
View Article and Find Full Text PDF