Background: Breast hypertrophy seems to be a risk factor for breast cancer and the amount and characteristics of breast adipose tissue may play important roles. The main aim of this study was to investigate associations between breast volume in normal weight women and hypertrophic adipose tissue and inflammation.
Methods: Fifteen non-obese women undergoing breast reduction surgery were examined.
Cell senescence (CS) is at the nexus between aging and associated chronic disorders, and aging increases the burden of CS in all major metabolic tissues. However, CS is also increased in adult obesity, type 2 diabetes (T2D), and nonalcoholic fatty liver disease independent of aging. Senescent tissues are characterized by dysfunctional cells and increased inflammation, and both progenitor cells and mature, fully differentiated and nonproliferating cells are afflicted.
View Article and Find Full Text PDFIn the last decades the prevalence of obesity has increased dramatically, and the worldwide epidemic of obesity and related metabolic diseases has contributed to an increased interest for the adipose tissue (AT), the primary site for storage of lipids, as a metabolically dynamic and endocrine organ. Subcutaneous AT is the depot with the largest capacity to store excess energy and when its limit for storage is reached hypertrophic obesity, local inflammation, insulin resistance and ultimately type 2 diabetes (T2D) will develop. Hypertrophic AT is also associated with a dysfunctional adipogenesis, depending on the inability to recruit and differentiate new mature adipose cells.
View Article and Find Full Text PDFObesity with dysfunctional adipose cells is the major cause of the current epidemic of type 2 diabetes (T2D). We examined senescence in human adipose tissue cells from age- and BMI-matched individuals who were lean, obese, and obese with T2D. In obese individuals and, more pronounced, those with T2D, we found mature and fully differentiated adipose cells to exhibit increased senescence similar to what we previously have shown in the progenitor cells.
View Article and Find Full Text PDFSenescence of adipose precursor cells (APC) impairs adipogenesis, contributes to the age-related subcutaneous adipose tissue (SAT) dysfunction, and increases risk of type 2 diabetes (T2D). First-degree relatives of T2D individuals (FDR) feature restricted adipogenesis, reflecting the detrimental effects of APC senescence earlier in life and rendering FDR more vulnerable to T2D. Epigenetics may contribute to these abnormalities but the underlying mechanisms remain unclear.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) is the most common cause of severe renal disease worldwide and the single strongest predictor of mortality in diabetes patients. Kidney steatosis has emerged as a critical trigger in the pathogenesis of DKD; however, the molecular mechanism of renal lipotoxicity remains largely unknown. Our recent studies in genetic mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine protein kinase 25 (STK25) as a critical regulator of ectopic lipid storage in several metabolic organs prone to diabetic damage.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are emerging as leading causes of liver disease worldwide and have been recognized as one of the major unmet medical needs of the 21st century. Our recent translational studies in mouse models, human cell lines, and well-characterized patient cohorts have identified serine/threonine kinase (STK)25 as a protein that coats intrahepatocellular lipid droplets (LDs) and critically regulates liver lipid homeostasis and progression of NAFLD/NASH. Here, we studied the mechanism-of-action of STK25 in steatotic liver by relative quantification of the hepatic LD-associated phosphoproteome from high-fat diet-fed knockout mice compared with their wild-type littermates.
View Article and Find Full Text PDFInappropriate expansion of the adipose cells in the subcutaneous adipose tissue (SAT) is a characteristic of hypertrophic obesity and of individuals with genetic predisposition for T2D (first-degree relatives; FDR). It is associated with insulin resistance, a dysfunctional, adipose tissue and reduced adipogenesis. We examined the regulation of adipogenesis in human SAT precursor cells and found ZNF521 to be a critical regulator of early adipogenic commitment and precursor cells leaving the cell cycle.
View Article and Find Full Text PDFEctopic lipid storage in the liver is considered the main risk factor for nonalcoholic steatohepatitis (NASH). Understanding the molecular networks controlling hepatocellular lipid deposition is therefore essential for developing new strategies to effectively prevent and treat this complex disease. Here, we describe a new regulator of lipid partitioning in human hepatocytes: mammalian sterile 20-like (MST) 3.
View Article and Find Full Text PDFHuman adipose cells cannot secrete endogenous PPARγ ligands and are dependent on unknown exogenous sources. We postulated that the adipose tissue microvascular endothelial cells (aMVECs) cross-talk with the adipose cells for fatty acid (FA) transport and storage and also may secrete PPARγ ligands. We isolated aMVECs from human subcutaneous adipose tissue and showed that in these cells, but not in (pre)adipocytes from the same donors, exogenous FAs increased cellular PPARγ activation and markedly increased FA transport and the transporters FABP4 and CD36.
View Article and Find Full Text PDFThe subcutaneous adipose tissue (SAT) is the largest and best storage site for excess lipids. However, it has a limited ability to expand by recruiting and/or differentiating available precursor cells. When inadequate, this leads to a hypertrophic expansion of the cells with increased inflammation, insulin resistance, and a dysfunctional prolipolytic tissue.
View Article and Find Full Text PDFBranched-chain amino acids (BCAAs) metabolite, 3-Hydroxyisobutyric acid (3-HIB) has been identified as a secreted mediator of endothelial cell fatty acid transport and insulin resistance (IR) using animal models. To identify if 3-HIB is a marker of human IR and future risk of developing Type 2 diabetes (T2D), we measured plasma levels of 3-HIB and associated metabolites in around 10,000 extensively phenotyped individuals. The levels of 3-HIB were increased in obesity but not robustly associated with degree of IR after adjusting for BMI.
View Article and Find Full Text PDFWISP2 is a novel adipokine, most highly expressed in the adipose tissue and primarily in undifferentiated mesenchymal cells. As a secreted protein, it is an autocrine/paracrine activator of canonical WNT signaling and, as an intracellular protein, it helps to maintain precursor cells undifferentiated. To examine effects of increased WISP2 in vivo, we generated an aP2-WISP2 transgenic (Tg) mouse.
View Article and Find Full Text PDFInterleukin-6 (IL-6) induces hepatic inflammation and insulin resistance, and therapeutic strategies to counteract the IL-6 action in liver are of high interest. In this study, we demonstrate that acute treatment with AMP-activated protein kinase (AMPK) agonists AICAR and metformin efficiently repressed IL-6-induced hepatic proinflammatory gene expression and activation of STAT3 in a mouse model of diet-induced type 2 diabetes, bringing it back to basal nonstimulated level. Surprisingly, the inflammatory response in liver induced by IL-6 administration in vivo was markedly blunted in the mice fed a high-fat diet, compared to lean chow-fed controls, while this difference was not replicated in vitro in primary hepatocytes derived from these two groups of mice.
View Article and Find Full Text PDFPartial depletion of serine/threonine protein kinase 25 (STK25), a member of the Ste20 superfamily of kinases, increases lipid oxidation and glucose uptake in rodent myoblasts. Here we show that transgenic mice overexpressing STK25, when challenged with a high-fat diet, develop reduced glucose tolerance and insulin sensitivity compared to wild-type siblings, as evidenced by impairment in glucose and insulin tolerance tests as well as in euglycemic-hyperinsulinemic clamp studies. The fasting plasma insulin concentration was elevated in Stk25 transgenic mice compared to wild-type littermates (4.
View Article and Find Full Text PDFInterleukin-6 (IL-6) induces inflammatory signalling in liver, leading to impaired insulin action in hepatocytes. In this study, we demonstrate that pharmacological activation of AMP-activated protein kinase (AMPK) represses IL-6-stimulated expression of proinflammatory markers serum amyloid A (Saa) as well as suppressor of cytokine signalling 3 (Socs3) in mouse liver. Further studies using the human hepatocellular carcinoma cell line HepG2 suggest that AMPK inhibits IL-6 signalling by repressing IL-6-stimulated phosphorylation of several downstream components of the pathway such as Janus kinase 1 (JAK1), SH2-domain containing protein tyrosine phosphatase 2 (SHP2) and signal transducer and activator of transcription 3 (STAT3).
View Article and Find Full Text PDFAims: The aim of this study was to investigate genetic variants in the gene neutrophil cytosolic factor 1 (NCF1) for association with rheumatoid arthritis (RA). In rodent models, a single-nucleotide polymorphism (SNP) in Ncf1 has been shown to be a major locus regulating severity of arthritis. Ncf1 encodes one of five subunits of the NADPH oxidase complex.
View Article and Find Full Text PDFRegulatory ubiquitylation is emerging as an important mechanism to protect genome integrity in cells exposed to DNA damage. However, the spectrum of known ubiquitin regulators of the DNA damage response (DDR) is limited and their functional interplay is poorly understood. Here, we identify HERC2 as a factor that regulates ubiquitin-dependent retention of repair proteins on damaged chromosomes.
View Article and Find Full Text PDFAm J Physiol Endocrinol Metab
November 2008
Circadian clocks coordinate physiological, behavioral, and biochemical events with predictable daily environmental changes by a self-sustained transcriptional feedback loop. CLOCK and ARNTL are transcriptional activators that regulate Per and Cry gene expression. PER and CRY inhibit their own transcription, and their turnover allows this cycle to restart.
View Article and Find Full Text PDFBackground: A polymorphism in the activating component of the nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex, neutrophil cytosolic factor 1 (NCF1), has previously been identified as a regulator of arthritis severity in mice and rats. This discovery resulted in a search for NADPH oxidase-activating substances as a potential new approach to treat autoimmune disorders such as rheumatoid arthritis (RA). We have recently shown that compounds inducing NCF1-dependent oxidative burst, e.
View Article and Find Full Text PDFLactic acid bacteria are probiotics widely used in functional food products, with a variety of beneficial effects reported. Recently, intense research has been carried out to provide insight into the mechanism of the action of probiotic bacteria. We have used gene array technology to map the pattern of changes in the global gene expression profile of the host caused by Lactobacillus administration.
View Article and Find Full Text PDFThe long-standing suspicion that Epstein-Barr virus nuclear antigen 5 (EBNA5) is involved in transcription regulation was recently confirmed by the observation by several groups that EBNA5 cooperates with EBNA2 in activation of the LMP1 promoter. In attempts to elucidate the molecular basis for the EBNA5-mediated enhancement of EBNA2 transactivation, we obtained evidence of an additional function of EBNA5: at high but still biologically relevant levels, EBNA5 acted as a repressor of gene expression by interfering with the processing of pre-mRNA. Transient transfections with reporter plasmids revealed that EBNA5 repressed reporter mRNA and protein expression in the cytoplasm, but did not lower the steady-state level of reporter RNA in the total cellular RNA fraction.
View Article and Find Full Text PDF