Ecological forecasting of forest productivity involves integrating observations into a process-based model and propagating the dominant components of uncertainty to generate probability distributions for future states and fluxes. Here, we develop a forecast for the biomass change in loblolly pine (Pinus taeda) forests of the southeastern United States and evaluate the relative contribution of different forms of uncertainty to the total forecast uncertainty. Specifically, we assimilated observations of carbon and flux stocks and fluxes from sites across the region, including global change experiments, into a forest ecosystem model to calibrate the parameter distributions and estimate the process uncertainty (i.
View Article and Find Full Text PDF