We significantly improve the infrared analysis of ultrathin films in aqueous environments by employing in situ infrared ellipsometry. Combining it with rigorous optical modeling avoids otherwise typical misinterpretations of spectral features and enables the simultaneous quantification of chemical composition, hydration states, structure, and molecular interactions. We apply this approach to study covalently end-grafted, nanometer-thin brushes of poly(N-isopropylacrylamide), a thermoresponsive model polymer for proteins at solid-liquid interfaces.
View Article and Find Full Text PDFTemperature-responsive oxazoline-based polymer brushes have gained increased attention as biocompatible surfaces. In aqueous environment, they can be tuned between hydrophilic and hydrophobic behavior triggered by a temperature stimulus. This transition is connected with changes in molecule-solvent interactions and results in a switching of the brushes between swollen and collapsed states.
View Article and Find Full Text PDFThe protein-adsorbing and -repelling properties of various smart nanometer-thin polymer brushes containing poly(N-isopropylacrylamide) and poly(acrylic acid) with high potential for biosensing and biomedical applications are studied by in situ infrared-spectroscopic ellipsometry (IRSE). IRSE is a highly sensitive nondestructive technique that allows protein adsorption on polymer brushes to be investigated in an aqueous environment as external stimuli, such as temperature and pH, are varied. These changes are relevant to conditions for regulation of protein adsorption and desorption for biotechnology, biocatalysis, and bioanalytical applications.
View Article and Find Full Text PDF