Publications by authors named "Annika Krautwurst"

Background: Fetal human platelet antigen (HPA) genotyping is required to determine whether the fetus is at risk and whether prenatal interventions to prevent fetal bleeding are required in pregnant women with a history of fetal and neonatal alloimmune thrombocytopenia (FNAIT). Methods for noninvasive genotyping of HPA alleles with the use of maternal plasma cell-free DNA were published recently but do lack internal controls to exclude false-negative results.

Study Design And Methods: Cell-free DNA was isolated from plasma of four pregnant women with a history of FNAIT caused by anti-HPA-1a and controls.

View Article and Find Full Text PDF

Immune thrombocytopenia (ITP) is a bleeding disorder caused by IgG autoantibodies (AAbs) directed against platelets (PLTs). IgG effector functions depend on their Fc-constant region which undergoes posttranslational glycosylation. We investigated the role of Asn279-linked N-glycan of AAbs in vitro and in vivo.

View Article and Find Full Text PDF

Fetal/neonatal alloimmune thrombocytopenia (FNAIT) is often caused by maternal alloantibodies against the human platelet antigen (HPA)-1a, which opsonizes fetal platelets (PLTs). Subsequent PLT destruction is mediated via the Fc part of the alloantibodies. The monoclonal antibody (mAb) SZ21 binds to the HPA-1a epitope and inhibits the binding of maternal alloantibodies.

View Article and Find Full Text PDF

Background: Maternal anti-HPA-1a alloantibodies are responsible for most cases of severe fetal and neonatal alloimmune thrombocytopenia (FNAIT). The presence of HPA-1a alloantibodies in maternal blood alone does not predict the fetal platelet (PLT) count, and the predictivity of antibody titers determined by enzyme immunoassays (EIAs) is debated. In contrast to EIA, surface plasmon resonance (SPR) provides information on antibody-binding properties.

View Article and Find Full Text PDF

Background: Neonatal alloimmune thrombocytopenia (NAIT) is mostly caused by maternal antibodies against human platelet antigen 1a (HPA-1a) expressed on glycoprotein (GP) IIb/IIIa. Accumulated evidence indicated that anti-HPA-1a could be overlooked by standard methods due to low avidity. Low-avidity HPA-1a antibodies were shown to be detectable by surface plasmon resonance (SPR).

View Article and Find Full Text PDF