Publications by authors named "Annika Koponen"

We present a miniaturized immunofluorescence assay (mini-IFA) for measuring antibody response in patient blood samples. The method utilizes machine learning-guided image analysis and enables simultaneous measurement of immunoglobulin M (IgM), IgA, and IgG responses against different viral antigens in an automated and high-throughput manner. The assay relies on antigens expressed through transfection, enabling use at a low biosafety level and fast adaptation to emerging pathogens.

View Article and Find Full Text PDF

During angiogenesis, endothelial cells form protrusive sprouts and migrate towards the angiogenic stimulus. In this study, we investigate the role of the endoplasmic reticulum (ER)-anchored protein, Protrudin, in endothelial cell protrusion, migration and angiogenesis. Our results demonstrate that Protrudin regulates angiogenic tube formation in primary endothelial cells, Human umbilical vein endothelial cells (HUVECs).

View Article and Find Full Text PDF

Oxysterol-binding protein-related protein 2 (ORP2), a cholesterol-PI(4,5)P countercurrent transporter, was recently identified as a novel regulator of plasma membrane (PM) cholesterol and PI(4,5)P content in HeLa cells. Here, we investigate the role of ORP2 in endothelial cell (EC) cholesterol and PI(4,5)P distribution, angiogenic signaling, and angiogenesis. We show that ORP2 knock-down modifies the distribution of cholesterol accessible to a D4H probe, between late endosomes and the PM.

View Article and Find Full Text PDF

Extracellular vesicles (EVs) have the ability to function as molecular vehicles and could therefore be harnessed to deliver drugs to target cells in diseases such as cancer. The composition of EVs determines their function as well as their interactions with cells, which consequently affects the cell uptake efficacy of EVs. In this study, we present two novel label-free approaches for studying EVs; characterization of EV composition by time-gated surface-enhanced Raman spectroscopy (TG-SERS) and monitoring the kinetics and amount of cellular uptake of EVs by surface plasmon resonance (SPR) in real-time.

View Article and Find Full Text PDF

Oxysterol-binding protein (OSBP)-related proteins (ORPs) constitute a family of intracellular lipid-binding/transport proteins (LTPs) in eukaryotes. They typically have a modular structure comprising a lipid-binding domain and membrane targeting determinants, being thus suited for function at membrane contact sites. Among the mammalian ORPs, ORP2/OSBPL2 is the only member that only exists as a 'short' variant lacking a membrane-targeting pleckstrin homology domain.

View Article and Find Full Text PDF

ORP2 is a sterol-binding protein with documented functions in lipid and glucose metabolism, Akt signaling, steroidogenesis, cell adhesion, migration and proliferation. Here we investigate the interactions of ORP2 with phosphoinositides (PIPs) by surface plasmon resonance (SPR), its affinity for cholesterol with a pull-down assay, and its capacity to transfer sterol in vitro. Moreover, we determine the effects of wild-type (wt) ORP2 and a mutant with attenuated PIP binding, ORP2(mHHK), on the subcellular distribution of cholesterol, and analyze the interaction of ORP2 with the related cholesterol transporter ORP1L.

View Article and Find Full Text PDF

ORP2 is a ubiquitously expressed OSBP-related protein previously implicated in endoplasmic reticulum (ER)-lipid droplet (LD) contacts, triacylglycerol (TG) metabolism, cholesterol transport, adrenocortical steroidogenesis, and actin-dependent cell dynamics. Here, we characterize the role of ORP2 in carbohydrate and lipid metabolism by employing ORP2-knockout (KO) hepatoma cells (HuH7) generated by CRISPR-Cas9 gene editing. The ORP2-KO and control HuH7 cells were subjected to RNA sequencing, analyses of Akt signaling, carbohydrate and TG metabolism, the extracellular acidification rate, and the lipidome, as well as to transmission electron microscopy.

View Article and Find Full Text PDF

ORP2 is implicated in cholesterol transport, triglyceride metabolism, and adrenocortical steroid hormone production. We addressed ORP2 function in hepatocytes by generating ORP2-knockout (KO) HuH7 cells by CRISPR-Cas9 gene editing, followed by analyses of transcriptome, F-actin morphology, migration, adhesion, and proliferation. RNA sequencing of ORP2-KO cells revealed >2-fold changes in 579 mRNAs.

View Article and Find Full Text PDF