3D cultures of primary human hepatocytes (PHH) are emerging as a more in vivo-like culture system than previously available hepatic models. This work describes the characterisation of drug metabolism in 3D PHH spheroids. Spheroids were formed from three different donors of PHH and the expression and activities of important cytochrome P450 enzymes (CYP1A2, 2B6, 2C9, 2D6, and 3A4) were maintained for up to 21 days after seeding.
View Article and Find Full Text PDFPurpose: Osimertinib is a potent and selective EGFR tyrosine kinase inhibitor (EGFR-TKI) of both sensitizing and T790M resistance mutations. To treat metastatic brain disease, blood-brain barrier (BBB) permeability is considered desirable for increasing clinical efficacy.
Experimental Design: We examined the level of brain penetration for 16 irreversible and reversible EGFR-TKIs using multiple and BBB preclinical models.
There is a high unmet need for developing treatments for nonalcoholic fatty liver disease (NAFLD), for which there are no approved drugs today. Here, we used a human in vitro disease model to understand mechanisms linked to genetic risk variants associated with NAFLD. The model is based on 3D spheroids from primary human hepatocytes from five different donors.
View Article and Find Full Text PDFTicagrelor, a P2Y12 antagonist, is approved for prevention of thromboembolic events. MEDI2452 is a potential reversal agent for ticagrelor and ticagrelor active metabolite (TAM). The total plasma exposure of ticagrelor and TAM in patients are roughly 0.
View Article and Find Full Text PDFPoor survival rates of patients with tumors arising from or disseminating into the brain are attributed to an inability to excise all tumor tissue (if operable), a lack of blood-brain barrier (BBB) penetration of chemotherapies/targeted agents, and an intrinsic tumor radio-/chemo-resistance. Ataxia-telangiectasia mutated (ATM) protein orchestrates the cellular DNA damage response (DDR) to cytotoxic DNA double-strand breaks induced by ionizing radiation (IR). ATM genetic ablation or pharmacological inhibition results in tumor cell hypersensitivity to IR.
View Article and Find Full Text PDFA key requirement in drug discovery is to accurately define intrinsic clearance (CL(int)) values of less than 1 µl/min/10(6) hepatocytes, which requires assays that allow for longer incubation time as a complement to suspended hepatocytes. This study assessed the effectiveness of plated HepaRG cells, plated primary human hepatocytes (PHHs), and the HµREL human hepatocyte/stromal cell co-cultures for determination of low CL(int) values. The investigation demonstrated that the systems were capable of providing statistically significant CL(int) estimations down to 0.
View Article and Find Full Text PDFTicagrelor is a direct-acting reversibly binding P2Y12 antagonist and is widely used as an antiplatelet therapy for the prevention of cardiovascular events in acute coronary syndrome patients. However, antiplatelet therapy can be associated with an increased risk of bleeding. Here, we present data on the identification and the in vitro and in vivo pharmacology of an antigen-binding fragment (Fab) antidote for ticagrelor.
View Article and Find Full Text PDFThe suppression of hepatic cytochrome P450 (P450) expression during inflammatory and infectious diseases and the relief of this suppression by successful disease treatment have been previously demonstrated to impact drug disposition. To address this clinically relevant phenomenon preclinically, the effect of proinflammatory cytokines on P450 isoenzymes in human hepatocytes has been examined by several researchers. In the present study we used the human hepatoma cell line (HepaRG) and cryopreserved primary human hepatocytes to investigate the effects of various inflammatory stimuli on P450 levels with the aim of further characterizing HepaRG cells as a useful surrogate for primary hepatocytes.
View Article and Find Full Text PDFAgonists of vasoactive intestinal peptide receptor 2 (VPAC2) stimulate glucose-dependent insulin secretion, making them attractive candidates for the treatment of hyperglycaemia and type-II diabetes. Vasoactive intestinal peptide (VIP) is an endogenous peptide hormone that potently agonizes VPAC2. However, VIP has a short serum half-life and poor pharmacokinetics in vivo and is susceptible to proteolytic degradation, making its development as a therapeutic agent challenging.
View Article and Find Full Text PDF