Objectives: To determine how the fitness cost of deformylase inhibitor resistance conferred by fmt mutations can be genetically compensated.
Methods: Resistant mutants were isolated and characterized with regard to their growth rates in vitro and in neutropenic mice, MIC and DNA sequence. Faster-growing compensated mutants were isolated by serial passage in culture medium, and for a subset of the resistant and compensated mutants whole-genome sequencing was performed.
Mutations in the fmt gene (encoding formyl methionine transferase) that eliminate formylation of initiator tRNA (Met-tRNA(i)) confer resistance to the novel antibiotic class of peptide deformylase inhibitors (PDFIs) while concomitantly reducing bacterial fitness. Here we show in Salmonella typhimurium that novel mutations in initiation factor 2 (IF2) located outside the initiator tRNA binding domain can partly restore fitness of fmt mutants without loss of antibiotic resistance. Analysis of initiation of protein synthesis in vitro showed that with non-formylated Met-tRNA(i) IF2 mutants initiated much faster than wild-type IF2, whereas with formylated fMet-tRNA(i) the initiation rates were similar.
View Article and Find Full Text PDFDeformylase inhibitors belong to a novel antibiotic class that targets peptide deformylase, a bacterial enzyme that removes the formyl group from N-terminal methionine in nascent polypeptides. Using the bacterium Salmonella enterica, we isolated mutants with resistance toward the peptide deformylase inhibitor actinonin. Resistance mutations were identified in two genes that are required for the formylation of methionyl (Met) initiator tRNA (tRNAi)(fMet): the fmt gene encoding the enzyme methionyl-tRNA formyltransferase and the folD gene encoding the bifunctional enzyme methylenetetrahydrofolate-dehydrogenase and -cyclohydrolase.
View Article and Find Full Text PDFExperimental evolution is a powerful approach to study the dynamics and mechanisms of bacterial niche specialization. By serial passage in mice, we evolved 18 independent lineages of Salmonella typhimurium LT2 and examined the rate and extent of adaptation to a mainly reticuloendothelial host environment. Bacterial mutation rates and population sizes were varied by using wild-type and DNA repair-defective mutator (mutS) strains with normal and high mutation rates, respectively, and by varying the number of bacteria intraperitoneally injected into mice.
View Article and Find Full Text PDFPolymorphisms in the rifampin resistance mutation frequency (f) were studied in 696 Escherichia coli strains from Spain, Sweden, and Denmark. Of the 696 strains, 23% were weakly hypermutable (4 x 10(-8) < or = f < 4 x 10(-7)), and 0.7% were strongly hypermutable (f > or = 4 x 10(-7)).
View Article and Find Full Text PDFAntimicrob Agents Chemother
September 2003
Fosfomycin is a cell wall inhibitor used mainly for the treatment of uncomplicated lower urinary tract infections. As shown here, resistance to fosfomycin develops rapidly in Escherichia coli under experimental conditions, but in spite of the relatively high mutation rate in vitro, resistance in clinical isolates is rare. To examine this apparent contradiction, we mathematically modeled the probability of resistance development in the bladder during treatment.
View Article and Find Full Text PDF