We found that nasal and alimentary experimental exposure of pigs to highly pathogenic avian influenza virus H5N1 clade 2.3.4.
View Article and Find Full Text PDFMass mortality was observed among colony-breeding seabirds in the German Wadden Sea area of the North Sea during the summer months of 2022. Several species' colonies were affected, most notably sandwich terns (), common terns () and Germany's only northern gannet () colony on the island of Heligoland. Mortality in some tern colonies reached 40%, while other colonies were almost spared.
View Article and Find Full Text PDFSwine influenza A virus (swIAV) plays an important role in porcine respiratory infections. In addition to its ability to cause severe disease by itself, it is important in the multietiological porcine respiratory disease complex. Still, to date, no comprehensive diagnostics with which to study polymicrobial infections in detail have been offered.
View Article and Find Full Text PDFBackground: Swine influenza caused by influenza A viruses (IAV) directly affects respiratory health and indirectly impairs reproduction rates in pigs causing production losses. In Europe, and elsewhere, production systems have intensified featuring fewer holdings but, in turn, increased breeding herd and litter sizes. This seems to foster swine IAV (swIAV) infections with respect to the entrenchment within and spread between holdings.
View Article and Find Full Text PDFWild aquatic birds are the main natural host reservoir of avian influenza viruses (AIV). Migratory aquatic birds can translocate AI viruses over wide geographic distances. AIV may be transmitted reciprocally at the wild bird-poultry interface, increasing viral variability and potentially driving the zoonotic potential of these viruses.
View Article and Find Full Text PDFThe main findings of the post-mortem examination of poultry infected with highly pathogenic avian influenza viruses (HPAIV) include necrotizing inflammation and viral antigen in multiple organs. The lesion profile displays marked variability, depending on viral subtype, strain, and host species. Therefore, in this study, a semiquantitative scoring system was developed to compare histopathological findings across a wide range of study conditions.
View Article and Find Full Text PDFSurveillance of swine influenza A viruses (swIAV) allows timely detection and identification of new variants with potential zoonotic risks. In this study, we aimed to identify swIAV subtypes that circulated in pigs in Belgium and the Netherlands between 2014 and 2019, and characterize their genetic and antigenic evolution. We subtyped all isolates and analyzed hemagglutinin sequences and hemagglutination inhibition assay data for H1 swIAV, which were the dominant HA subtype.
View Article and Find Full Text PDFWe report a zoonotic infection of a pig farmer in the Netherlands with a Eurasian avian-like swine influenza A(H1N1) virus that was also detected in the farmed pigs. Both viruses were antigenically and genetically characterized. Continued surveillance of swine influenza A viruses is needed for risk assessment in humans and swine.
View Article and Find Full Text PDFSevere acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a pandemic with millions of infected humans and hundreds of thousands of fatalities. As the novel disease - referred to as COVID-19 - unfolded, occasional anthropozoonotic infections of animals by owners or caretakers were reported in dogs, felid species and farmed mink. Further species were shown to be susceptible under experimental conditions.
View Article and Find Full Text PDFBackground: In December, 2019, a novel zoonotic severe acute respiratory syndrome-related coronavirus emerged in China. The novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) became pandemic within weeks and the number of human infections and severe cases is increasing. We aimed to investigate the susceptibilty of potential animal hosts and the risk of anthropozoonotic spill-over infections.
View Article and Find Full Text PDFSwine influenza A viruses (swIAVs) can play a crucial role in the generation of new human pandemic viruses. In this study, in-depth passive surveillance comprising nearly 2,500 European swine holdings and more than 18,000 individual samples identified a year-round presence of up to four major swIAV lineages on more than 50% of farms surveilled. Phylogenetic analyses show that intensive reassortment with human pandemic A(H1N1)/2009 (H1pdm) virus produced an expanding and novel repertoire of at least 31 distinct swIAV genotypes and 12 distinct hemagglutinin/neuraminidase combinations with largely unknown consequences for virulence and host tropism.
View Article and Find Full Text PDFEmerg Microbes Infect
September 2020
In 2016/2017, a severe epidemic of HPAIV H5N8 clade 2.3.4.
View Article and Find Full Text PDFAvian influenza viruses (AIV) are classified into 16 hemagglutinin (HA; H1-H16) and 9 neuraminidase (NA; N1-N9) subtypes. All AIV are low pathogenic (LP) in birds, but subtypes H5 and H7 AIV can evolve into highly pathogenic (HP) forms. In the last two decades evolution of HPAIV H7 from LPAIV has been frequently reported.
View Article and Find Full Text PDFAvian influenza viruses (AIVs) continue to impose a negative impact on animal and human health worldwide. In particular, the emergence of highly pathogenic AIV H5 and, more recently, the emergence of low pathogenic AIV H7N9 have led to enormous socioeconomical losses in the poultry industry and resulted in fatal human infections. While H5N1 remains infamous, the number of zoonotic infections with H7N9 has far surpassed those attributed to H5.
View Article and Find Full Text PDFHighly pathogenic avian influenza virus (HPAIV) infection in poultry caused devastating mortality and economic losses. HPAIV of subtypes H5 and H7 emerge from precursor viruses of low pathogenicity (LP) by spontaneous mutation associated with a shift in the susceptibility of the endoproteolytic cleavage site of the viral hemagglutinin protein from trypsin- to furin-like proteases. A recently described natural pair of LP/HP H7N7 viruses derived from two spatio-temporally linked outbreaks in layer chickens was used to study how a minority of mutated HP virions after de novo generation in a single host might gain primacy.
View Article and Find Full Text PDFThe ability of low pathogenic (LP) avian influenza viruses (AIV) of the subtypes H5 and H7 to mutate spontaneously to highly pathogenic (HP) variants is the main reason for their stringent control. On-the-spot evidence from the field of mutations in LPAIV to render the virus into nascent HP variants is scarce. Epidemiological investigations and molecular characterization of two spatiotemporally linked outbreaks caused by LP, and subsequently, HPAIV H7N7 in two-layer farms in Germany yielded such evidence.
View Article and Find Full Text PDFLow pathogenic avian influenza viruses (LPAIV) of the subtypes H5 and H7 are known to give rise to highly pathogenic (HP) phenotypes by spontaneous insertional mutations which convert a monobasic trypsin-sensitive endoproteolytical cleavage site (CS) within the hemagglutinin (HA) protein into a polybasic subtilisin-sensitive one. Sporadic outbreaks of notifiable LPAIV H7 infections are continuously recorded in Europe and in Asia, and some lineages showed zoonotic transmission. De novo generation of HPAIV H7 from LPAIV precursors has been reported several times over the past decade.
View Article and Find Full Text PDFSince November 2016, Europe witnesses another wave of incursion of highly pathogenic avian influenza (HPAI) A(H5) viruses of the Asian origin goose/Guangdong (gs/GD) lineage. Infections with H5 viruses of clade 2.3.
View Article and Find Full Text PDF