Hypoxia contributes to resistance of tumors to some cytotoxic drugs and to radiotherapy, but can in principle be exploited with hypoxia-activated prodrugs (HAP). HAP in clinical development fall into two broad groups. Class I HAP (like the benzotriazine N-oxides tirapazamine and SN30000), are activated under relatively mild hypoxia.
View Article and Find Full Text PDFActivation of prodrugs in tumors (e.g., by bioreduction in hypoxic zones) has the potential to generate active metabolites that can diffuse within the tumor microenvironment.
View Article and Find Full Text PDFPurpose: Benzotriazine-N-oxide bioreductive prodrugs such as tirapazamine and its improved analogue CEN-209 (SN30000) have potential for exploiting hypoxia in tumors. Here, we test the hypothesis that the 2-nitroimidazole EF5, in clinical development for both immunohistochemical and positron emission tomography imaging of hypoxia, can detect not only hypoxia but also the one-electron reductases required for activation of these hypoxia-targeted prodrugs.
Experimental Design: Aerobic and hypoxic covalent binding of [(14)C]-EF5 was determined in human tumor cell lines, including lines with overexpression of NADPH:cytochrome P450 oxidoreductase (CYPOR), and reductive metabolism of tirapazamine and CEN-209 by mass spectrometry.
Background & Aims: TNF was the first cytokine employed for cancer therapy, but its use was limited due to its insufficient selectivity towards malignant cells. Fructose induces transient hepatic ATP depletion in humans and rodents due to the liver-specific fructose metabolism via fructokinase, while other cells e.g.
View Article and Find Full Text PDF