Neprilysins are highly conserved ectoenzymes that hydrolyze and thus inactivate signaling peptides in the extracellular space. Herein, we focus on Neprilysin 4 from and evaluate the existing knowledge on the physiological relevance of the peptidase. Particular attention is paid to the role of the neprilysin in regulating feeding behavior and the expression of insulin-like peptides in the central nervous system.
View Article and Find Full Text PDFMuscle contraction depends on strictly controlled Ca transients within myocytes. A major player maintaining these transients is the sarcoplasmic/endoplasmic reticulum Ca ATPase, SERCA. Activity of SERCA is regulated by binding of micropeptides and impaired expression or function of these peptides results in cardiomyopathy.
View Article and Find Full Text PDFThe neprilysin (M13) family of metalloendopeptidases comprises highly conserved ectoenzymes that cleave and thereby inactivate many physiologically relevant peptides in the extracellular space. Impaired neprilysin activity is associated with numerous human diseases. Here, we present a comprehensive list and classification of M13 family members in .
View Article and Find Full Text PDFIn yeast and animal cells, mitochondrial disturbances resulting from imbalances in the respiratory chain require malate dehydrogenase (MDH) activities for re-directing fluxes of reducing equivalents. In plants, in addition to mitochondria, plastids use malate valves to counterbalance and maintain redox-homeostasis. Arabidopsis expresses three cytosolic MDH isoforms, namely cyMDH1, cyMDH2, and cyMDH3, the latter possessing an N-terminal extension carrying a unique cysteine residue C2.
View Article and Find Full Text PDFThe biomechanical properties of extracellular matrices (ECMs) are critical to many biological processes, including cell-cell communication and cell migration and function. The correct balance between stiffness and elasticity is essential to the function of numerous tissues, including blood vessels and the lymphatic system, and depends on ECM constituents (the "matrisome") and on their level of interconnection. However, despite its physiological relevance, the matrisome composition and organization remain poorly understood.
View Article and Find Full Text PDF