Microbial methane oxidation is a major biofilter preventing larger emissions of this powerful greenhouse gas from marine coastal areas into the atmosphere. In these zones, various electron acceptors such as sulfate, metal oxides, nitrate, or oxygen can be used. However, the key microbial players and mechanisms of methane oxidation are poorly understood.
View Article and Find Full Text PDFAbility to directly sequence DNA from the environment permanently changed microbial ecology. Here, we review the new insights to microbial life gleaned from the applications of metagenomics, as well as the extensive set of analytical tools that facilitate exploration of diversity and function of complex microbial communities. While metagenomics is shaping our understanding of microbial functions in ecosystems via gene-centric and genome-centric methods, annotating functions, metagenome assembly and binning in heterogeneous samples remains challenging.
View Article and Find Full Text PDFMicrobial mats, due to stratification of the redox zones, have a potential to include a complete N cycle, however an attempt to evaluate a complete N cycle in these ecosystems has not been yet made. In this study, occurrence and rates of major N cycle processes were evaluated in intact microbial mats from Elkhorn Slough, Monterey Bay, CA, USA, and Baja California Sur, Mexico under oxic and anoxic conditions using N-labeling techniques. All of the major N transformation pathways, with the exception of anammox, were detected in both microbial mats.
View Article and Find Full Text PDFArctic permafrost soils store large amounts of organic matter that is sensitive to temperature increases and subsequent microbial degradation to methane (CH ) and carbon dioxide (CO ). Here, we studied methanogenic and methanotrophic activity and community composition in thermokarst lake sediments from Utqiag˙vik (formerly Barrow), Alaska. This experiment was carried out under in situ temperature conditions (4°C) and the IPCC 2013 Arctic climate change scenario (10°C) after addition of methanogenic and methanotrophic substrates for nearly a year.
View Article and Find Full Text PDFMicroorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic 'Candidatus Methanothrix paradoxum', which is active in oxic soils.
View Article and Find Full Text PDF