Background: Pancreatic ductal adenocarcinoma (PDAC) is projected to be the second leading cause of cancer death in the USA by 2030. Immune checkpoint inhibitors fail to control most PDAC tumors because of PDAC's extensive immunosuppressive microenvironment and poor immune infiltration, a phenotype also seen in other non-inflamed (ie, 'cold') tumors. Identifying novel ways to enhance immunotherapy efficacy in PDAC is critical.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is the third leading cause of cancer death in the United States. Pancreatic tumors are minimally infiltrated by T cells and are largely refractory to immunotherapy. Accordingly, the role of T-cell immunity in pancreatic cancer has been somewhat overlooked.
View Article and Find Full Text PDFThe CRISPR/Cas9 system has recently emerged as a highly efficient modality in genetic engineering and has been widely considered for various therapeutic applications. However, since the effector protein, SpCas9, has a bacterial origin, its immunogenicity must be explored in further depth. Here, we found that the intact immune system, in wild-type C57BL/6J and BALB/cL mice, stimulates specific immune response against SpCas9, resulting in the rejection of SpCas9-expressing tumors.
View Article and Find Full Text PDFThe gene for Pregnancy Up-regulated Non-ubiquitous Calmodulin Kinase (Pnck), a novel calmodulin kinase, is expressed in roughly one-third of human breast tumors, but not in adjoining normal tissues. Pnck alters EGFR stability and function, prompting this study to determine if Pnck expression has implications for HER-2 function and HER-2-directed therapy. The frequency of Pnck expression in HER-2-amplified breast cancer was examined by immunohistochemistry, and the impact of Pnck expression in the presence of HER-2 amplification on cancer cell proliferation, clonogenicity, cell-cycle progression, and Trastuzumab sensitivity was examined in vitro by transfection of cells with Pnck.
View Article and Find Full Text PDFThe ability of cells to rapidly detect and react to alterations in their chemical environment, such as pH, ionic strength and redox potential, is essential for cell function and survival. We present here evidence that cells can respond to such environmental alterations by rapid induction of matriptase autoactivation. Specifically, we show that matriptase autoactivation can occur spontaneously at physiological pH, and is significantly enhanced by acidic pH, both in a cell-free system and in living cells.
View Article and Find Full Text PDFPregnancy upregulated non-ubiquitous calmodulin kinase (Pnck), a novel calmodulin kinase, is significantly overexpressed in breast and renal cancers. We present evidence that at high cell density, overexpression of Pnck in HEK 293 cells inhibits serum-induced extracellular signal-regulated kinase (ERK1/ERK2) activation. ERK1/2 inhibition is calcium-dependent and Pnck kinase activity is required for ERK1/2 inhibition, since expression of a kinase-dead (K44A) and a catalytic loop phosphorylation mutant (T171A) Pnck protein is unable to inhibit ERK1/2 activity.
View Article and Find Full Text PDFMembrane-associated serine protease matriptase is widely expressed by epithelial/carcinoma cells in which its proteolytic activity is tightly controlled by the Kunitz-type protease inhibitor, hepatocyte growth factor activator inhibitor (HAI-1). We demonstrate that, although matriptase is not expressed in lymphoid hyperplasia, roughly half of the non-Hodgkin B-cell lymphomas analyzed express significant amounts of matriptase. Furthermore, a significant proportion of these tumors express matriptase in the absence of HAI-1.
View Article and Find Full Text PDFWe have recently described a novel role for pregnancy-upregulated non-ubiquitous calmodulin kinase (Pnck) in the induction of ligand-independent epidermal growth factor receptor (EGFR) degradation (Deb TB, Coticchia CM, Barndt R, Zuo H, Dickson RB, and Johnson MD. Am J Physiol Cell Physiol 295: C365-C377, 2008). In the current communication, we explore the probable mechanism by which Pnck induces ligand-independent EGFR degradation.
View Article and Find Full Text PDF