Publications by authors named "Annie St-Amand"

Article Synopsis
  • In 2022, the International Society of Exposure Science launched the HB2GV Dashboard, a free online tool that compiles approximately 600 human biomonitoring guidance values for over 150 chemicals to assist risk assessors and managers.
  • The Dashboard includes various types of guidance values, primarily focusing on Biomonitoring Equivalents and Human Biomonitoring values, but new users may struggle to understand how to interpret these values effectively.
  • A case study on di-(2-ethylhexyl) phthalate (DEHP) is presented to highlight the differences in derivation methods, quality, and confident interpretation of guidance values, emphasizing the importance of selecting appropriate HB2GVs for informed health-based decisions.
View Article and Find Full Text PDF

Exposure load (EL) is an indicator of multiple chemical exposures based on human biomonitoring data. We used EL methodology and human biomonitoring health-based guidance values (HB2GVs) as exposure thresholds to create a new metric called Cumulative Health Risk from Exposure Load (CHREL). HB2GVs are derived by calculating the concentration of a biomarker consistent with a health protective exposure guidance value.

View Article and Find Full Text PDF

Despite demonstrated disparities in environmental chemical exposures by racial identity, no Canadian study has systematically assessed the feasibility of using a nationally representative dataset to examine differences in chemical concentrations by race. We assessed the feasibility and constraints of analysing chemical exposures in racial populations, including visible minorities and populations of Indigenous identity, using biomonitoring data collected through the Canadian Health Measures Survey (CHMS). Our primary objectives were to assess the ability to 1) generate geometric means and percentiles of chemical concentrations for racial populations by age or sex, 2) statistically compare concentrations among racial populations, and 3) calculate time trends of concentrations by race.

View Article and Find Full Text PDF

Background/objectives: The body burden of mercury in humans can be measured through hair or blood biomarkers. To compare results from different studies, it is often required to convert mercury in hair to an equivalent level in blood, using a default hair:blood ratio of 250:1 by the World Health Organization (WHO). However, the actual ratio may vary within and between populations.

View Article and Find Full Text PDF

Human biomonitoring (HBM) data measured in specific contexts or populations provide information for comparing population exposures. There are numerous health-based biomonitoring guidance values, but to locate these values, interested parties need to seek them out individually from publications, governmental reports, websites and other sources. Until now, there has been no central, international repository for this information.

View Article and Find Full Text PDF

Data generated by the rapidly evolving human biomonitoring (HBM) programmes are providing invaluable opportunities to support and advance regulatory risk assessment and management of chemicals in occupational and environmental health domains. However, heterogeneity across studies, in terms of design, terminology, biomarker nomenclature, and data formats, limits our capacity to compare and integrate data sets retrospectively (reuse). Registration of HBM studies is common for clinical trials; however, the study designs and resulting data collections cannot be traced easily.

View Article and Find Full Text PDF

To improve our understanding of internal exposure to multiple chemicals, the concept exposure load (EL) was used on human biomonitoring (HBM) data of the 4th FLEHS (Flemish Environment and Health Study; 2016-2020). The investigated chemicals were per- and polyfluoroalkyl substances (PFASs), bisphenols, phthalates and alternative plasticizers, flame retardants, pesticides, toxic metals, organochlorine compounds and polycyclic aromatic hydrocarbons (PAHs). The EL calculates "the number of chemicals to which individuals are internally exposed above a predefined threshold".

View Article and Find Full Text PDF

Ten years of nationally representative biomonitoring data collected between 2007 and 2017 are available from the Canadian Health Measures Survey (CHMS). These data establish baseline environmental chemical concentrations in the general population. Here we sought to evaluate temporal trends in environmental chemical exposures in the Canadian population by quantifying changes in biomarker concentrations measured in the first five two-year cycles of the CHMS.

View Article and Find Full Text PDF

People are often concurrently exposed to numerous chemicals. Here we sought to leverage existing large biomonitoring datasets to improve our understanding of multi-chemical exposures in a population. Using nationally-representative data from the 2012-2015 Canadian Health Measures Survey (CHMS), we developed Exposure Load, a metric that counts the number of chemicals measured in people above a defined concentration threshold.

View Article and Find Full Text PDF

Exposure to triclosan, an antimicrobial agent, and bisphenol A (BPA), the monomer of polycarbonate plastics, is widespread. Endocrine-disrupting impacts of these chemicals have been demonstrated in in vitro studies, rodent toxicology studies, and some human observational studies. Here we compared urinary concentrations of triclosan and BPA in the Canadian and U.

View Article and Find Full Text PDF

The Canadian Health Measures Survey (CHMS), an ongoing national health survey conducted in two-year cycles, collects extensive biomonitoring data that is used to assess the exposure of Canadians to environmental chemicals of concern. Combining data from multiple cycles of the CHMS allows for the calculation of robust regional estimates of chemical concentrations in blood and urine. The objective of this work was to compare biomarkers of exposure to several environmental chemicals for the provinces of Quebec and Ontario, two major CHMS regions, as well as the entire CHMS (representing Canada) minus Quebec (CMQ), and the entire CHMS minus Ontario (CMO), and to interpret differences between regions.

View Article and Find Full Text PDF

In order to characterize exposure of the Canadian population to environmental chemicals, a human biomonitoring component has been included in the Canadian Health Measures Survey (CHMS). This nationally-representative survey, launched in 2007 by the Government of Canada, has measured over 250 chemicals in approximately 30,000 Canadians during the last decade. The capacity to interpret these data at the population level in a health risk context is gradually improving with the development of biomonitoring screening values, such as biomonitoring equivalents (BE) and human biomonitoring (HBM) values.

View Article and Find Full Text PDF

This study describes blood plasma concentrations of PCBs and p,p'-DDE in the Canadian population aged 20-79 years. PCBs and p,p'-DDE were measured in 1668 participants in the Canadian Health Measures Survey, Cycle 1 (2007-2009). We investigated how concentrations vary by sociodemographic, anthropometric, and lifestyle variables, identified factors associated with exposures, and evaluated concentrations against health-based guidance values.

View Article and Find Full Text PDF

3-Phenoxybenzoic acid (3-PBA) is a common metabolite of several pyrethroid pesticides of differing potency and also occurs as a residue in foods resulting from environmental degradation of parent pyrethroid compounds. Thus, 3-PBA in urine is not a specific biomarker of exposure to a particular pyrethroid. However, an approach derived from the use of Biomonitoring Equivalents (BEs) can be used to estimate a conservative initial screening value for a tiered assessment of population data on 3-PBA in urine.

View Article and Find Full Text PDF

Since 2007, the Canadian Health Measures Survey (CHMS) has been collecting biomonitoring data from the general Canadian population and has provided, to date, nationally representative concentrations for hundreds of environmental biomarkers in blood or urine. Biomonitoring Equivalents (BEs) have been developed as tools to help interpret biomonitoring data in a health risk context at a population level. In this paper, BEs are used to relate biomonitoring data from the CHMS (2007-2011) to existing exposure guidance values developed by Health Canada and other government agencies.

View Article and Find Full Text PDF

Indoor air quality (IAQ) has been understudied in day-care centres (DCCs), even though it can affect the respiratory health of children. This study was undertaken to assess IAQ in a randomly selected sample of 21 DCCs having space for at least 40 children in Montréal, Canada, and to determine associations between building characteristics and IAQ. Questionnaires on building characteristics and operation of the DCC were administered to managers.

View Article and Find Full Text PDF