Objectives: We evaluate the crimping strain, sealing stress and contact forces on a Nitinol stent deployed in the aorta during endovascular aortic (or aneurysm) repair (EVAR) procedures. Nitinol shape memory effect (SME) is used. We also study the fluid-structure interaction (FSI) of the blood flow on the stented aorta.
View Article and Find Full Text PDFThe effect of hemodynamic load on various stent-graft designs used for endovascular aneurysm repair (EVAR) in cardiovascular treatments is studied using a numerical fluid-structure interaction (FSI) analysis that couples computational fluid dynamics (CFD) and finite element analysis (FEA). Radial displacements, mechanical stresses, wall shear stress and wall compliance quantities are evaluated for four stent materials and one graft material. The strut thickness is varied from 0.
View Article and Find Full Text PDFPhase identification of multi-phase materials provides essential information relating the material to its mechanical properties. In this study we selected DP980, a type of dual-phase steel, to investigate the content of martensite and ferrite grains. A combination of advanced techniques was used to provide detailed and precise information of the microstructure.
View Article and Find Full Text PDF