Recent technological advances led to the discovery of hundreds to thousands of peptides and small proteins (microproteins) encoded by small open reading frames (smORFs). Characterization of new microproteins demonstrates their role in fundamental biological processes and highlights the value in discovering and characterizing more microproteins. The elucidation of microprotein-protein interactions (MPIs) is useful for determining the biochemical and cellular roles of microproteins.
View Article and Find Full Text PDFRecent studies have shown that a subset of nucleoporins (Nups) can detach from the nuclear pore complex and move into the nuclear interior to regulate transcription. One such dynamic Nup, called Nup98, has been implicated in gene activation in healthy cells and has been shown to drive leukemogenesis when mutated in patients with acute myeloid leukemia (AML). Here we show that in hematopoietic cells, Nup98 binds predominantly to transcription start sites to recruit the Wdr82-Set1A/COMPASS (complex of proteins associated with Set1) complex, which is required for deposition of the histone 3 Lys4 trimethyl (H3K4me3)-activating mark.
View Article and Find Full Text PDFMicroproteins are peptides and small proteins encoded by small open reading frames (smORFs). Newer technologies have led to the recent discovery of hundreds to thousands of new microproteins. The biological functions of a few microproteins have been elucidated, and these microproteins have fundamental roles in biology ranging from limb development to muscle function, highlighting the value of characterizing these molecules.
View Article and Find Full Text PDF